Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DOCS] torch.compile examples 24.4 #27152

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
180 changes: 180 additions & 0 deletions docs/articles_en/openvino-workflow/torch-compile.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,186 @@ By default, Torch code runs in eager-mode, but with the use of ``torch.compile``
How to Use
####################


.. tab-set::

.. tab-item:: Image Generation

.. tab-set::

.. tab-item:: Stable-Diffusion-2

.. code-block:: py
:force:

import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

model_id = "stabilityai/stable-diffusion-2-1"

# Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

+ pipe.text_encoder = torch.compile(pipe.text_encoder, backend="openvino") #Optional
+ pipe.unet = torch.compile(pipe.unet, backend=“openvino”)
+ pipe.vae.decode = torch.compile(pipe.vae.decode, backend=“openvino”) #Optional

prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]

image.save("astronaut_rides_horse.png")


.. tab-item:: Stable-Diffusion-3

.. code-block:: py

import torch
from diffusers import StableDiffusion3Pipeline

pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float32)

+ pipe.transformer = torch.compile(pipe.transformer, backend="openvino")

image = pipe(
"A cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=28,
guidance_scale=7.0,
).images[0]

image.save('out.png')

.. tab-item:: Stable-Diffusion-XL

.. code-block:: py

import torch
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler

unet = UNet2DConditionModel.from_pretrained("latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16")
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

+ pipe.text_encoder = torch.compile(pipe.text_encoder, backend="openvino") #Optional
+ pipe.unet = torch.compile(pipe.unet, backend="openvino")
+ pipe.vae.decode = torch.compile(pipe.vae.decode, backend="openvino") #Optional

prompt = "a close-up picture of an old man standing in the rain"
image = pipe(prompt, num_inference_steps=5, guidance_scale=8.0).images[0]
image.save("result.png")

.. tab-item:: Text Generation

.. tab-set::

.. tab-item:: Llama-3.2-1B

.. code-block:: py

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.float32)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
device_map='cpu',
torch_dtype=torch.float32
)

prompt = "Tell me about AI"

+ model.forward = torch.compile(model.forward, backend="openvino", options={'aot_autograd': True})

pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=64
)
result = pipe(prompt)
print(result[0]['generated_text'])


.. tab-item:: Llama-2-7B-GPTQ

.. code-block:: py

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Llama-2-7B-GPTQ"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.float32)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
device_map='cpu',
torch_dtype=torch.float32
)

prompt = "Tell me about AI"

+ model.forward = torch.compile(model.forward, backend="openvino", options={'aot_autograd': True})

pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=64
)
result = pipe(prompt)
print(result[0]['generated_text'])


.. tab-item:: Chatglm-4-GPTQ

.. code-block:: py

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

query = "tell me about AI“

tokenizer = AutoTokenizer.from_pretrained("mcavus/glm-4v-9b-gptq-4bit-dynamo", trust_remote_code=True)
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
model = AutoModelForCausalLM.from_pretrained(
"mcavus/glm-4v-9b-gptq-4bit-dynamo",
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True
)

+ model.transformer.encoder.forward = torch.compile(model.transformer.encoder.forward, backend="openvino", options={"aot_autograd":True})

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
















To use ``torch.compile``, you need to define the ``openvino`` backend in your PyTorch application.
This way Torch FX subgraphs will be directly converted to OpenVINO representation without
any additional PyTorch-based tracing/scripting.
Expand Down
Loading