-
Notifications
You must be signed in to change notification settings - Fork 2.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Modify test cases which are failing parallel execution #21877
Modify test cases which are failing parallel execution #21877
Conversation
* Addressing the "Known limitation" issue for test cases which failed parallel execution.
self._test(*self.create_keras_upsampling2d_net(**params, input_type=input_type, data_format=data_format, | ||
interpolation=interpolation, ir_version=ir_version), | ||
self._test(*self.create_keras_upsampling2d_net(**params, ir_version=ir_version), | ||
ie_device, precision, temp_dir=temp_dir, use_old_api=use_old_api, ir_version=ir_version, | ||
use_new_frontend=use_new_frontend, **params) | ||
|
||
# Tests for bilinear interpolation | ||
test_data_bilinear = [ | ||
pytest.param((["x1"], [[1, 6, 2, 1]], tf.float32, (3, 1), 'channels_last', 'bilinear'), marks=pytest.mark.precommit_tf_fe), | ||
(["x1"], [[1, 3, 1, 6]], tf.float32, (5, 2), 'channels_last', 'bilinear') | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_bilinear) | ||
@pytest.mark.nightly | ||
def test_keras_upsampling2d_bilinear(self, params, ie_device, precision, ir_version, temp_dir, | ||
use_old_api, use_new_frontend): | ||
input_names, input_shapes, input_type, size, data_format, interpolation = params | ||
self._test(*self.create_keras_upsampling2d_net(input_names=input_names, input_shapes=input_shapes, input_type=input_type, size=size, data_format=data_format, interpolation=interpolation, | ||
ir_version=ir_version), ie_device, precision, temp_dir=temp_dir, use_old_api=use_old_api, ir_version=ir_version, use_new_frontend=use_new_frontend, **params) | ||
|
||
test_data_channels_first = [ | ||
dict(input_names=["x1"], input_shapes=[[5, 4, 5, 3]], input_type=tf.float32, | ||
size=(3, 4), data_format='channels_first', interpolation='nearest'), | ||
dict(input_names=["x1"], input_shapes=[[3, 2, 7, 2]], input_type=tf.float32, | ||
size=(2, 3), data_format='channels_first', interpolation='nearest'), | ||
dict(input_names=["x1"], input_shapes=[[3, 5, 4, 6]], input_type=tf.float32, | ||
size=(5, 2), data_format='channels_first', interpolation='nearest'), | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_channels_first) | ||
@pytest.mark.nightly | ||
def test_keras_upsampling2d_channels_first(self, params, ie_device, precision, ir_version, | ||
temp_dir, use_old_api, use_new_frontend): | ||
self._test(*self.create_keras_upsampling2d_net(**params, ir_version=ir_version), | ||
ie_device, precision, temp_dir=temp_dir, use_old_api=use_old_api, ir_version=ir_version, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please revert these changes. The latest update covers sufficient cases
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please address one comment
@LakshmiGayathri19, why did you open new PR?:) I just resolved conflicts there:) Best regards, |
Duplicate PR. |
Details:
Tickets: