-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
88 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
""" | ||
Copyright (c) 2024 Intel Corporation | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
from pathlib import Path | ||
from unittest.mock import MagicMock | ||
|
||
import pytest | ||
from accuracy_checker.evaluators.custom_evaluators.whisper_evaluator import ( | ||
GenAIWhisperPipeline, OptimumWhisperPipeline, HFWhisperPipeline, | ||
WhisperEvaluator, normalize_transcription) | ||
from datasets import load_dataset | ||
from optimum.exporters.openvino.convert import export_tokenizer | ||
from optimum.intel.openvino import OVModelForSpeechSeq2Seq | ||
from transformers import AutoTokenizer,AutoProcessor | ||
|
||
|
||
def export_model(model_id, output_dir): | ||
tokenizer = AutoTokenizer.from_pretrained(model_id) | ||
processor = AutoProcessor.from_pretrained(model_id) | ||
base_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id) | ||
|
||
base_model.save_pretrained(output_dir) | ||
tokenizer.save_pretrained(output_dir) | ||
processor.save_pretrained(output_dir) | ||
export_tokenizer(tokenizer, output_dir) | ||
|
||
model_name = "openai/whisper-tiny" | ||
model_dir = Path("/tmp/whisper-tiny") | ||
|
||
# Export the model | ||
export_model(model_name, model_dir) | ||
|
||
# Load a single sample from the dataset | ||
dataset = load_dataset("openslr/librispeech_asr", "clean", split="validation", streaming=True, trust_remote_code=True) | ||
sample = next(iter(dataset)) | ||
ground_truth = sample["text"] | ||
input_data = [sample["audio"]["array"]] | ||
input_meta = [{"sample_rate": sample["audio"]["sampling_rate"]}] | ||
identifiers = [sample["id"]] | ||
# print(ground_truth) | ||
|
||
class TestWhisperEvaluator: | ||
def test_hf_whisper_pipeline(self): | ||
config = {"model_id": model_name} | ||
pipeline = HFWhisperPipeline(config) | ||
evaluator = WhisperEvaluator(None, pipeline, None) | ||
|
||
result = evaluator.pipe._get_predictions(input_data, identifiers, input_meta) | ||
assert isinstance(result, str) | ||
# print(result) | ||
|
||
def test_genai_whisper_pipeline(self): | ||
config = {"_models": [model_dir], "_device": "CPU"} | ||
pipeline = GenAIWhisperPipeline(config) | ||
evaluator = WhisperEvaluator(None, pipeline, None) | ||
|
||
result = evaluator.pipe._get_predictions(input_data, identifiers, input_meta) | ||
assert isinstance(result, str) | ||
# print(result) | ||
|
||
def test_optimum_whisper_pipeline(self): | ||
config = {"_models": [model_dir], "_device": "CPU"} | ||
pipeline = OptimumWhisperPipeline(config) | ||
evaluator = WhisperEvaluator(None, pipeline, None) | ||
|
||
result = evaluator.pipe._get_predictions(input_data, identifiers, input_meta) | ||
assert isinstance(result, str) | ||
# print(result) | ||
|
||
|
||
def test_normalize_transcription(): | ||
engine = MagicMock() | ||
engine.number_to_words.side_effect = lambda x: "one" if x == "1" else x | ||
text = "This is a test 1" | ||
result = normalize_transcription(engine, text) | ||
assert result == "THIS IS A TEST ONE" |