-
-
Notifications
You must be signed in to change notification settings - Fork 135
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[PoC] AutoGluon TimeSeries Prototype #494
Changes from 3 commits
e2f08df
d4412e3
3f53533
53b816a
3c3a2dd
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -16,6 +16,7 @@ venv/ | |
.idea/ | ||
*.iml | ||
*.swp | ||
launch.json | ||
|
||
# tmp files | ||
.ipynb_checkpoints/ | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -30,7 +30,7 @@ def __init__(self, cache_dir=None): | |
self._cache_dir = cache_dir if cache_dir else tempfile.mkdtemp(prefix='amlb_cache') | ||
|
||
@profile(logger=log) | ||
def load(self, dataset, fold=0): | ||
def load(self, dataset, fold=0, timestamp_column=None): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. you obtained this new column using
so you already have the information in the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. true |
||
dataset = dataset if isinstance(dataset, ns) else ns(path=dataset) | ||
log.debug("Loading dataset %s", dataset) | ||
paths = self._extract_train_test_paths(dataset.path if 'path' in dataset else dataset, fold=fold) | ||
|
@@ -51,7 +51,7 @@ def load(self, dataset, fold=0): | |
if ext == '.arff': | ||
return ArffDataset(train_path, test_path, target=target, features=features, type=type_) | ||
elif ext == '.csv': | ||
return CsvDataset(train_path, test_path, target=target, features=features, type=type_) | ||
return CsvDataset(train_path, test_path, target=target, features=features, type=type_, timestamp_column=timestamp_column) | ||
else: | ||
raise ValueError(f"Unsupported file type: {ext}") | ||
|
||
|
@@ -302,25 +302,26 @@ def release(self, properties=None): | |
class CsvDataset(FileDataset): | ||
|
||
def __init__(self, train_path, test_path, | ||
target=None, features=None, type=None): | ||
target=None, features=None, type=None, timestamp_column=None): | ||
# todo: handle auto-split (if test_path is None): requires loading the training set, split, save | ||
super().__init__(None, None, | ||
target=target, features=features, type=type) | ||
self._train = CsvDatasplit(self, train_path) | ||
self._test = CsvDatasplit(self, test_path) | ||
self._train = CsvDatasplit(self, train_path, timestamp_column=timestamp_column) | ||
self._test = CsvDatasplit(self, test_path, timestamp_column=timestamp_column) | ||
self._dtypes = None | ||
|
||
|
||
class CsvDatasplit(FileDatasplit): | ||
|
||
def __init__(self, dataset, path): | ||
def __init__(self, dataset, path, timestamp_column=None): | ||
super().__init__(dataset, format='csv', path=path) | ||
self._ds = None | ||
self.timestamp_column = timestamp_column | ||
|
||
def _ensure_loaded(self): | ||
if self._ds is None: | ||
if self.dataset._dtypes is None: | ||
df = read_csv(self.path) | ||
df = read_csv(self.path, timestamp_column=self.timestamp_column) | ||
# df = df.convert_dtypes() | ||
dt_conversions = {name: 'category' | ||
for name, dtype in zip(df.dtypes.index, df.dtypes.values) | ||
|
@@ -336,8 +337,9 @@ def _ensure_loaded(self): | |
|
||
self._ds = df | ||
self.dataset._dtypes = self._ds.dtypes | ||
|
||
else: | ||
self._ds = read_csv(self.path, dtype=self.dataset._dtypes.to_dict()) | ||
self._ds = read_csv(self.path, dtype=self.dataset._dtypes.to_dict(), timestamp_column=self.timestamp_column) | ||
|
||
@profile(logger=log) | ||
def load_metadata(self): | ||
|
@@ -348,7 +350,7 @@ def load_metadata(self): | |
else 'number' if pat.is_numeric_dtype(dt) | ||
else 'category' if pat.is_categorical_dtype(dt) | ||
else 'string' if pat.is_string_dtype(dt) | ||
# else 'datetime' if pat.is_datetime64_dtype(dt) | ||
else 'datetime' if pat.is_datetime64_dtype(dt) | ||
else 'object') | ||
features = [Feature(i, col, to_feature_type(dtypes[i])) | ||
for i, col in enumerate(self._ds.columns)] | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -228,12 +228,16 @@ def load_predictions(predictions_file): | |
try: | ||
df = read_csv(predictions_file, dtype=object) | ||
log.debug("Predictions preview:\n %s\n", df.head(10).to_string()) | ||
if rconfig().test_mode: | ||
TaskResult.validate_predictions(df) | ||
if df.shape[1] > 2: | ||
return ClassificationResult(df) | ||
if 'y_past_period_error' in df.columns: | ||
return TimeSeriesResult(df) | ||
Comment on lines
+235
to
+236
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please don't bypass test mode by adding your own test block: it should remain the first check and also be applied for time series. Not asking you to add the test dataset in our workflow right now, but we will need to add this soon after your changes. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. got it |
||
else: | ||
return RegressionResult(df) | ||
if rconfig().test_mode: | ||
TaskResult.validate_predictions(df) | ||
|
||
if df.shape[1] > 2: | ||
return ClassificationResult(df) | ||
else: | ||
return RegressionResult(df) | ||
except Exception as e: | ||
return ErrorResult(ResultError(e)) | ||
else: | ||
|
@@ -255,7 +259,8 @@ def save_predictions(dataset: Dataset, output_file: str, | |
predictions: Union[A, DF, S] = None, truth: Union[A, DF, S] = None, | ||
probabilities: Union[A, DF] = None, probabilities_labels: Union[list, A] = None, | ||
target_is_encoded: bool = False, | ||
preview: bool = True): | ||
preview: bool = True, | ||
quantiles: Union[A, DF] = None): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nitpick: let's try to group the params functionally, makes it easier to read and understand params. Here There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. got it |
||
""" Save class probabilities and predicted labels to file in csv format. | ||
|
||
:param dataset: | ||
|
@@ -266,6 +271,7 @@ def save_predictions(dataset: Dataset, output_file: str, | |
:param probabilities_labels: | ||
:param target_is_encoded: | ||
:param preview: | ||
:param quantiles: | ||
:return: None | ||
""" | ||
log.debug("Saving predictions to `%s`.", output_file) | ||
|
@@ -308,6 +314,24 @@ def save_predictions(dataset: Dataset, output_file: str, | |
|
||
df = df.assign(predictions=preds) | ||
df = df.assign(truth=truth) | ||
|
||
if dataset.type == DatasetType.timeseries: | ||
if quantiles is not None: | ||
quantiles = quantiles.reset_index(drop=True) | ||
df = pd.concat([df, quantiles], axis=1) | ||
|
||
period_length = 1 # TODO: This period length could be adapted to the Dataset, but then we need to pass this information as well. As of now this works. | ||
|
||
# we aim to calculate the mean period error from the past for each sequence: 1/N sum_{i=1}^N |x(t_i) - x(t_i - T)| | ||
# 1. retrieve item_ids for each sequence/item | ||
item_ids, inverse_item_ids = np.unique(dataset.test.X[dataset.id_column].squeeze().to_numpy(), return_index=False, return_inverse=True) | ||
# 2. capture sequences in a list | ||
y_past = [dataset.test.y.squeeze().to_numpy()[inverse_item_ids == i][:-dataset.prediction_length] for i in range(len(item_ids))] | ||
# 3. calculate period error per sequence | ||
y_past_period_error = [np.abs(y_past_item[period_length:] - y_past_item[:-period_length]).mean() for y_past_item in y_past] | ||
# 4. repeat period error for each sequence, to save one for each element | ||
y_past_period_error_rep = np.repeat(y_past_period_error, dataset.prediction_length) | ||
df = df.assign(y_past_period_error=y_past_period_error_rep) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'd rather not have this here, this looks like a lot of calculations + assumptions (apparently you can't have time series without an For now, I'd move your computations to the Suggestion: def save_predictions(dataset: Dataset, output_file: str,
predictions: Union[A, DF, S] = None, truth: Union[A, DF, S] = None,
probabilities: Union[A, DF] = None, probabilities_labels: Union[list, A] = None,
optional_columns: Union[A, DF] = None,
target_is_encoded: bool = False,
preview: bool = True): and automatically concatenate the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. got it |
||
if preview: | ||
log.info("Predictions preview:\n %s\n", df.head(20).to_string()) | ||
backup_file(output_file) | ||
|
@@ -656,6 +680,71 @@ def r2(self): | |
"""R^2""" | ||
return float(r2_score(self.truth, self.predictions)) | ||
|
||
class TimeSeriesResult(RegressionResult): | ||
|
||
def __init__(self, predictions_df, info=None): | ||
super().__init__(predictions_df, info) | ||
self.truth = self.df['truth'].values if self.df is not None else None #.iloc[:, 1].values if self.df is not None else None | ||
self.predictions = self.df['predictions'].values if self.df is not None else None #.iloc[:, -2].values if self.df is not None else None | ||
self.y_past_period_error = self.df['y_past_period_error'].values | ||
self.quantiles = self.df.iloc[:, 2:-1].values | ||
self.quantiles_probs = np.array([float(q) for q in self.df.columns[2:-1]]) | ||
self.truth = self.truth.astype(float, copy=False) | ||
self.predictions = self.predictions.astype(float, copy=False) | ||
self.quantiles = self.quantiles.astype(float, copy=False) | ||
self.y_past_period_error = self.y_past_period_error.astype(float, copy=False) | ||
|
||
self.target = Feature(0, 'target', 'real', is_target=True) | ||
self.type = DatasetType.timeseries | ||
|
||
@metric(higher_is_better=False) | ||
def mase(self): | ||
"""Mean Absolute Scaled Error""" | ||
return float(np.nanmean(np.abs(self.truth/self.y_past_period_error - self.predictions/self.y_past_period_error))) | ||
|
||
@metric(higher_is_better=False) | ||
def smape(self): | ||
"""Symmetric Mean Absolute Percentage Error""" | ||
num = np.abs(self.truth - self.predictions) | ||
denom = (np.abs(self.truth) + np.abs(self.predictions)) / 2 | ||
# If the denominator is 0, we set it to float('inf') such that any division yields 0 (this | ||
# might not be fully mathematically correct, but at least we don't get NaNs) | ||
denom[denom == 0] = math.inf | ||
return np.mean(num / denom) | ||
|
||
@metric(higher_is_better=False) | ||
def mape(self): | ||
"""Symmetric Mean Absolute Percentage Error""" | ||
num = np.abs(self.truth - self.predictions) | ||
denom = np.abs(self.truth) | ||
# If the denominator is 0, we set it to float('inf') such that any division yields 0 (this | ||
# might not be fully mathematically correct, but at least we don't get NaNs) | ||
denom[denom == 0] = math.inf | ||
return np.mean(num / denom) | ||
|
||
@metric(higher_is_better=False) | ||
def nrmse(self): | ||
"""Normalized Root Mean Square Error""" | ||
return self.rmse() / np.mean(np.abs(self.truth)) | ||
|
||
@metric(higher_is_better=False) | ||
def wape(self): | ||
"""Weighted Average Percentage Error""" | ||
return np.sum(np.abs(self.truth - self.predictions)) / np.sum(np.abs(self.truth)) | ||
|
||
@metric(higher_is_better=False) | ||
def ncrps(self): | ||
"""Normalized Continuous Ranked Probability Score""" | ||
quantile_losses = 2 * np.sum( | ||
np.abs( | ||
(self.quantiles - self.truth[:, None]) | ||
* ((self.quantiles >= self.truth[:, None]) - self.quantiles_probs[None, :]) | ||
), | ||
axis=0, | ||
) | ||
denom = np.sum(np.abs(self.truth)) # shape [num_time_series, num_quantiles] | ||
weighted_losses = quantile_losses.sum(0) / denom # shape [num_quantiles] | ||
return weighted_losses.mean() | ||
|
||
_encode_predictions_and_truth_ = False | ||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# AutoGluonTS | ||
|
||
AutoGluonTS stands for autogluon.timeseries. This framework handles time series problems. | ||
|
||
This code is currently a prototype, since time series support is not fully defined in AutoMLBenchmark yet. | ||
Consider the code a proof of concept. | ||
|
||
## Run Steps | ||
|
||
To run AutoGluonTS in AutoMLBenchmark on the covid dataset from the AutoGluon tutorial, do the following: | ||
|
||
1. Create a fresh Python environment | ||
2. Follow automlbenchmark install instructions | ||
3. Run the following command in terminal: ```python3 ../automlbenchmark/runbenchmark.py autogluonts ts test``` | ||
|
||
To run mainline AutoGluonTS instead of v0.5.2: ```python3 ../automlbenchmark/runbenchmark.py autogluonts:latest ts test``` |
Original file line number | Diff line number | Diff line change | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,38 @@ | ||||||||||
from amlb.benchmark import TaskConfig | ||||||||||
from amlb.data import Dataset, DatasetType | ||||||||||
from amlb.utils import call_script_in_same_dir | ||||||||||
|
||||||||||
|
||||||||||
def setup(*args, **kwargs): | ||||||||||
call_script_in_same_dir(__file__, "setup.sh", *args, **kwargs) | ||||||||||
|
||||||||||
|
||||||||||
def run(dataset: Dataset, config: TaskConfig): | ||||||||||
from frameworks.shared.caller import run_in_venv | ||||||||||
|
||||||||||
if hasattr(dataset, 'timestamp_column') is False: | ||||||||||
dataset.timestamp_column = None | ||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. for this one and below
Suggested change
|
||||||||||
if hasattr(dataset, 'id_column') is False: | ||||||||||
dataset.id_column = None | ||||||||||
if hasattr(dataset, 'prediction_length') is False: | ||||||||||
raise AttributeError("Unspecified `prediction_length`.") | ||||||||||
if dataset.type is not DatasetType.timeseries: | ||||||||||
raise ValueError("AutoGluonTS only supports timeseries.") | ||||||||||
|
||||||||||
data = dict( | ||||||||||
# train=dict(path=dataset.train.data_path('parquet')), | ||||||||||
# test=dict(path=dataset.test.data_path('parquet')), | ||||||||||
train=dict(path=dataset.train.path), | ||||||||||
test=dict(path=dataset.test.path), | ||||||||||
target=dict( | ||||||||||
name=dataset.target.name, | ||||||||||
classes=dataset.target.values | ||||||||||
), | ||||||||||
problem_type=dataset.type.name, # AutoGluon problem_type is using same names as amlb.data.DatasetType | ||||||||||
timestamp_column=dataset.timestamp_column, | ||||||||||
id_column=dataset.id_column, | ||||||||||
prediction_length=dataset.prediction_length | ||||||||||
) | ||||||||||
|
||||||||||
return run_in_venv(__file__, "exec.py", | ||||||||||
input_data=data, dataset=dataset, config=config) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
looks like most of this logic could reside in the loading logic itself as this is dealing with information available in
self._task_def.dataset
which is directly available to the file loader.I'd move the logic to
dataset/file.py
for now to minimize scope of changes.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Okay, so you want me to extend the FileDataset or the CsvDataset?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think you can extract this logic in a dedicated method in
file.py
for clarity (it's just mutatingdataset
after all), and if you just support CVS right now, then please apply it only there.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
so I added it to a dedicated method in
file.py
inside theFileLoader
class.