Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.05925 #4991

Merged
merged 3 commits into from
Feb 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
302 changes: 302 additions & 0 deletions joss.05925/10.21105.joss.05925.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,302 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240207T222426-05ab3deab7d4338db1b2375a3451d2166fd485d8</doi_batch_id>
<timestamp>20240207222426</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>02</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>94</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Chi: A Python package for treatment response
modelling</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>David</given_name>
<surname>Augustin</surname>
<ORCID>https://orcid.org/0000-0002-4885-1088</ORCID>
</person_name>
</contributors>
<publication_date>
<month>02</month>
<day>07</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5925</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05925</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10510572</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5925</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05925</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05925</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05925.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="hucka:2003">
<article_title>The systems biology markup language (SBML): A
medium for representation and exchange of biochemical network
models</article_title>
<author>Hucka</author>
<journal_title>Bioinformatics</journal_title>
<issue>4</issue>
<volume>19</volume>
<doi>10.1093/bioinformatics/btg015</doi>
<cYear>2003</cYear>
<unstructured_citation>Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,
Bray, D., Cornish-Bowden, A., &amp; others. (2003). The systems biology
markup language (SBML): A medium for representation and exchange of
biochemical network models. Bioinformatics, 19(4), 524–531.
https://doi.org/10.1093/bioinformatics/btg015</unstructured_citation>
</citation>
<citation key="Augustin:2023">
<article_title>Filter inference: A scalable nonlinear mixed
effects inference approach for snapshot time series data</article_title>
<author>Augustin</author>
<journal_title>PLOS Computational Biology</journal_title>
<issue>5</issue>
<volume>19</volume>
<doi>10.1371/journal.pcbi.1011135</doi>
<cYear>2023</cYear>
<unstructured_citation>Augustin, D., Lambert, B., Wang, K.,
Walz, A.-C., Robinson, M., &amp; Gavaghan, D. (2023). Filter inference:
A scalable nonlinear mixed effects inference approach for snapshot time
series data. PLOS Computational Biology, 19(5), 1–29.
https://doi.org/10.1371/journal.pcbi.1011135</unstructured_citation>
</citation>
<citation key="SCHUCK:2015">
<article_title>Preclinical pharmacokinetic / pharmacodynamic
modeling and simulation in the pharmaceutical industry: An IQ consortium
survey examining the current landscape</article_title>
<author>Schuck</author>
<journal_title>The AAPS journal</journal_title>
<issue>2</issue>
<volume>17</volume>
<doi>10.1208/s12248-014-9716-2</doi>
<cYear>2015</cYear>
<unstructured_citation>Schuck, E., Bohnert, T., Chakravarty,
A., Damian-Iordache, V., Gibson, C., Hsu, C.-P., Heimbach, T.,
Krishnatry, A. S., Liederer, B. M., Lin, J., Maurer, T., Mettetal, J.
T., Mudra, D. R., Nijsen, M. J., Raybon, J., Schroeder, P., Schuck, V.,
Suryawanshi, S., Su, Y., … Wong, H. (2015). Preclinical pharmacokinetic
/ pharmacodynamic modeling and simulation in the pharmaceutical
industry: An IQ consortium survey examining the current landscape. The
AAPS Journal, 17(2), 462–473.
https://doi.org/10.1208/s12248-014-9716-2</unstructured_citation>
</citation>
<citation key="MORGAN:2018">
<article_title>Impact of a five-dimensional framework on
r&amp;d productivity at AstraZeneca</article_title>
<author>Morgan</author>
<journal_title>Nature Reviews Drug Discovery</journal_title>
<issue>3</issue>
<volume>17</volume>
<doi>10.1038/nrd.2017.244</doi>
<cYear>2018</cYear>
<unstructured_citation>Morgan, P., Brown, D. G., Lennard,
S., Anderton, M. J., Barrett, J. C., Eriksson, U., Fidock, M., Hamrén,
B., Johnson, A., March, R. E., Matcham, J., Mettetal, J., Nicholls, D.
J., Platz, S., Rees, S., Snowden, M. A., &amp; Pangalos, M. N. (2018).
Impact of a five-dimensional framework on r&amp;d productivity at
AstraZeneca. Nature Reviews Drug Discovery, 17(3), 167–181.
https://doi.org/10.1038/nrd.2017.244</unstructured_citation>
</citation>
<citation key="LAVE:2016">
<article_title>Translational PK/PD modeling to increase
probability of success in drug discovery and early
development</article_title>
<author>Lavé</author>
<journal_title>Drug Discovery Today:
Technologies</journal_title>
<volume>21-22</volume>
<doi>10.1016/j.ddtec.2016.11.005</doi>
<issn>1740-6749</issn>
<cYear>2016</cYear>
<unstructured_citation>Lavé, T., Caruso, A., Parrott, N.,
&amp; Walz, A. (2016). Translational PK/PD modeling to increase
probability of success in drug discovery and early development. Drug
Discovery Today: Technologies, 21-22, 27–34.
https://doi.org/10.1016/j.ddtec.2016.11.005</unstructured_citation>
</citation>
<citation key="Augustin:20232">
<article_title>Simulating clinical trials for model-informed
precision dosing: Using warfarin treatment as a use case</article_title>
<author>Augustin</author>
<journal_title>Frontiers in Pharmacology</journal_title>
<volume>14</volume>
<doi>10.3389/fphar.2023.1270443</doi>
<issn>1663-9812</issn>
<cYear>2023</cYear>
<unstructured_citation>Augustin, D., Lambert, B., Robinson,
M., Wang, K., &amp; Gavaghan, D. (2023). Simulating clinical trials for
model-informed precision dosing: Using warfarin treatment as a use case.
Frontiers in Pharmacology, 14.
https://doi.org/10.3389/fphar.2023.1270443</unstructured_citation>
</citation>
<citation key="Clerx:2019">
<article_title>Probabilistic inference on noisy time series
(PINTS)</article_title>
<author>Clerx</author>
<journal_title>Journal of Open Research
Software</journal_title>
<doi>10.5334/jors.252</doi>
<cYear>2019</cYear>
<unstructured_citation>Clerx, M., Robinson, M., Lambert, B.,
Lei, C. L., Ghosh, S., Mirams, G. R., &amp; Gavaghan, D. J. (2019).
Probabilistic inference on noisy time series (PINTS). Journal of Open
Research Software.
https://doi.org/10.5334/jors.252</unstructured_citation>
</citation>
<citation key="keizer2013modeling">
<article_title>Modeling and simulation workbench for NONMEM:
Tutorial on pirana, PsN, and xpose</article_title>
<author>Keizer</author>
<journal_title>CPT: pharmacometrics &amp; systems
pharmacology</journal_title>
<issue>6</issue>
<volume>2</volume>
<doi>10.1038/psp.2013.24</doi>
<cYear>2013</cYear>
<unstructured_citation>Keizer, R. J., Karlsson, M., &amp;
Hooker, A. (2013). Modeling and simulation workbench for NONMEM:
Tutorial on pirana, PsN, and xpose. CPT: Pharmacometrics &amp; Systems
Pharmacology, 2(6), 1–9.
https://doi.org/10.1038/psp.2013.24</unstructured_citation>
</citation>
<citation key="hosseini2018gpkpdsim">
<article_title>gPKPDSim: A SimBiology-based GUI application
for PKPD modeling in drug development</article_title>
<author>Hosseini</author>
<journal_title>Journal of pharmacokinetics and
pharmacodynamics</journal_title>
<volume>45</volume>
<doi>10.1007/s10928-017-9562-9</doi>
<cYear>2018</cYear>
<unstructured_citation>Hosseini, I., Gajjala, A., Bumbaca
Yadav, D., Sukumaran, S., Ramanujan, S., Paxson, R., &amp; Gadkar, K.
(2018). gPKPDSim: A SimBiology-based GUI application for PKPD modeling
in drug development. Journal of Pharmacokinetics and Pharmacodynamics,
45, 259–275.
https://doi.org/10.1007/s10928-017-9562-9</unstructured_citation>
</citation>
<citation key="sorzano2021scipion">
<article_title>Scipion PKPD: An open-source platform for
biopharmaceutics, pharmacokinetics and pharmacodynamics data
analysis</article_title>
<author>Sorzano</author>
<journal_title>Pharmaceutical Research</journal_title>
<issue>7</issue>
<volume>38</volume>
<doi>10.1007/s11095-021-03065-1</doi>
<cYear>2021</cYear>
<unstructured_citation>Sorzano, C., Fonseca-Reyna, Y., &amp;
Cruz-Moreno, M. P. de la. (2021). Scipion PKPD: An open-source platform
for biopharmaceutics, pharmacokinetics and pharmacodynamics data
analysis. Pharmaceutical Research, 38(7), 1169–1178.
https://doi.org/10.1007/s11095-021-03065-1</unstructured_citation>
</citation>
<citation key="rackauckas2020accelerated">
<article_title>Accelerated predictive healthcare analytics
with pumas, a high performance pharmaceutical modeling and simulation
platform</article_title>
<author>Rackauckas</author>
<journal_title>BioRxiv</journal_title>
<doi>10.1101/2020.11.28.402297</doi>
<cYear>2020</cYear>
<unstructured_citation>Rackauckas, C., Ma, Y., Noack, A.,
Dixit, V., Mogensen, P. K., Byrne, S., Maddhashiya, S., Santiago
Calderón, J. B., Nyberg, J., Gobburu, J. V., &amp; others. (2020).
Accelerated predictive healthcare analytics with pumas, a high
performance pharmaceutical modeling and simulation platform. BioRxiv,
2020–2011.
https://doi.org/10.1101/2020.11.28.402297</unstructured_citation>
</citation>
<citation key="clerx2016myokit">
<article_title>Myokit: A simple interface to cardiac
cellular electrophysiology</article_title>
<author>Clerx</author>
<journal_title>Progress in biophysics and molecular
biology</journal_title>
<issue>1-3</issue>
<volume>120</volume>
<doi>10.1016/j.pbiomolbio.2015.12.008</doi>
<cYear>2016</cYear>
<unstructured_citation>Clerx, M., Collins, P., De Lange, E.,
&amp; Volders, P. G. (2016). Myokit: A simple interface to cardiac
cellular electrophysiology. Progress in Biophysics and Molecular
Biology, 120(1-3), 100–114.
https://doi.org/10.1016/j.pbiomolbio.2015.12.008</unstructured_citation>
</citation>
<citation key="2020SciPy-NMeth">
<article_title>SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python</article_title>
<author>Virtanen</author>
<journal_title>Nature Methods</journal_title>
<volume>17</volume>
<doi>10.1038/s41592-019-0686-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Virtanen, P., Gommers, R., Oliphant,
T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17,
261–272.
https://doi.org/10.1038/s41592-019-0686-2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading