Skip to content

Commit

Permalink
Merge pull request #5130 from openjournals/joss.05549
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Mar 14, 2024
2 parents 94275aa + f4b16d0 commit 73c1014
Show file tree
Hide file tree
Showing 4 changed files with 583 additions and 0 deletions.
235 changes: 235 additions & 0 deletions joss.05549/10.21105.joss.05549.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240314T195636-93132f7f46f786b33c9da4f3c3dbf5a433922a62</doi_batch_id>
<timestamp>20240314195636</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>95</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>OmniTrax: A deep learning-driven multi-animal tracking
and pose-estimation add-on for Blender</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Fabian</given_name>
<surname>Plum</surname>
<ORCID>https://orcid.org/0000-0003-1012-6646</ORCID>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>14</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5549</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05549</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10817891</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5549</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05549</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05549</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05549.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Blender">
<article_title>Blender - a 3D modelling and rendering
package</article_title>
<author>Blender-Online-Community</author>
<cYear>2022</cYear>
<unstructured_citation>Blender-Online-Community. (2022).
Blender - a 3D modelling and rendering package. Blender Foundation.
http://www.blender.org</unstructured_citation>
</citation>
<citation key="YOLOv4">
<article_title>YOLOv4: Optimal speed and accuracy of object
detection</article_title>
<author>Bochkovskiy</author>
<doi>10.48550/ARXIV.2004.10934</doi>
<cYear>2020</cYear>
<unstructured_citation>Bochkovskiy, A., Wang, C.-Y., &amp;
Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object
detection.
https://doi.org/10.48550/ARXIV.2004.10934</unstructured_citation>
</citation>
<citation key="YOLOv3">
<article_title>YOLOv3: An incremental
improvement</article_title>
<author>Redmon</author>
<journal_title>CoRR</journal_title>
<volume>abs/1804.02767</volume>
<doi>10.48550/arXiv.1804.02767</doi>
<cYear>2018</cYear>
<unstructured_citation>Redmon, J., &amp; Farhadi, A. (2018).
YOLOv3: An incremental improvement. CoRR, abs/1804.02767.
https://doi.org/10.48550/arXiv.1804.02767</unstructured_citation>
</citation>
<citation key="Kuhn1955">
<article_title>The Hungarian method for the assignment
problem</article_title>
<author>Kuhn</author>
<journal_title>Naval Research Logistics
(NRL)</journal_title>
<volume>52</volume>
<doi>10.1002/nav.3800020109</doi>
<cYear>1955</cYear>
<unstructured_citation>Kuhn, H. W. (1955). The Hungarian
method for the assignment problem. Naval Research Logistics (NRL), 52.
https://doi.org/10.1002/nav.3800020109</unstructured_citation>
</citation>
<citation key="Mathisetal2018">
<article_title>DeepLabCut: Markerless pose estimation of
user-defined body parts with deep learning</article_title>
<author>Mathis</author>
<journal_title>Nature Neuroscience</journal_title>
<doi>10.1038/s41593-018-0209-y</doi>
<cYear>2018</cYear>
<unstructured_citation>Mathis, A., Mamidanna, P., Cury, K.
M., Abe, T., Murthy, V. N., Mathis, M. W., &amp; Bethge, M. (2018).
DeepLabCut: Markerless pose estimation of user-defined body parts with
deep learning. Nature Neuroscience.
https://doi.org/10.1038/s41593-018-0209-y</unstructured_citation>
</citation>
<citation key="Kane2020dlclive">
<article_title>Real-time, low-latency closed-loop feedback
using markerless posture tracking</article_title>
<author>Kane</author>
<journal_title>eLife</journal_title>
<doi>10.7554/eLife.61909</doi>
<cYear>2020</cYear>
<unstructured_citation>Kane, G., Lopes, G., Sanders, J.,
Mathis, A., &amp; Mathis, M. (2020). Real-time, low-latency closed-loop
feedback using markerless posture tracking. eLife.
https://doi.org/10.7554/eLife.61909</unstructured_citation>
</citation>
<citation key="Plum2021">
<article_title>scAnt an open-source platform for the
creation of 3D models of arthropods (and other small
objects)</article_title>
<author>Plum</author>
<journal_title>PeerJ</journal_title>
<volume>9</volume>
<doi>10.7717/peerj.11155</doi>
<cYear>2021</cYear>
<unstructured_citation>Plum, F., &amp; Labonte, D. (2021).
scAnt an open-source platform for the creation of 3D models of
arthropods (and other small objects). PeerJ, 9, e11155.
https://doi.org/10.7717/peerj.11155</unstructured_citation>
</citation>
<citation key="Plumetal2023">
<article_title>replicAnt: A pipeline for generating
annotated images of animals in complex environments using unreal
engine</article_title>
<author>Plum</author>
<journal_title>Nature Communications</journal_title>
<volume>14</volume>
<doi>10.1038/s41467-023-42898-9</doi>
<issn>2041-1723</issn>
<cYear>2023</cYear>
<unstructured_citation>Plum, F., Bulla, R., Beck, H. K.,
Imirzian, N., &amp; Labonte, D. (2023). replicAnt: A pipeline for
generating annotated images of animals in complex environments using
unreal engine. Nature Communications, 14.
https://doi.org/10.1038/s41467-023-42898-9</unstructured_citation>
</citation>
<citation key="Kalafatic2001">
<article_title>A system for tracking laboratory animals
based on optical flow and active contours</article_title>
<author>Kalafatic</author>
<journal_title>Proceedings - 11th International Conference
on Image Analysis and Processing, ICIAP 2001</journal_title>
<doi>10.1109/ICIAP.2001.957031</doi>
<isbn>076951183X</isbn>
<cYear>2001</cYear>
<unstructured_citation>Kalafatic, Z., Ribaric, S., &amp;
Stanisavljevic, V. (2001). A system for tracking laboratory animals
based on optical flow and active contours. Proceedings - 11th
International Conference on Image Analysis and Processing, ICIAP 2001,
334–339.
https://doi.org/10.1109/ICIAP.2001.957031</unstructured_citation>
</citation>
<citation key="Walter2021">
<article_title>Trex, a fast multi-animal tracking system
with markerless identi cation, and 2d estimation of posture and visual
elds</article_title>
<author>Walter</author>
<journal_title>eLife</journal_title>
<volume>10</volume>
<doi>10.7554/eLife.64000</doi>
<cYear>2021</cYear>
<unstructured_citation>Walter, T., &amp; Couzin, I. D.
(2021). Trex, a fast multi-animal tracking system with markerless identi
cation, and 2d estimation of posture and visual elds. eLife, 10, 1–73.
https://doi.org/10.7554/eLife.64000</unstructured_citation>
</citation>
<citation key="Perez-Escudero2014">
<article_title>IdTracker: Tracking individuals in a group by
automatic identification of unmarked animals</article_title>
<author>Pérez-Escudero</author>
<journal_title>Nature Methods</journal_title>
<issue>7</issue>
<volume>11</volume>
<doi>10.1038/nmeth.2994</doi>
<cYear>2014</cYear>
<unstructured_citation>Pérez-Escudero, A., Vicente-Page, J.,
Hinz, R. C., Arganda, S., &amp; De Polavieja, G. G. (2014). IdTracker:
Tracking individuals in a group by automatic identification of unmarked
animals. Nature Methods, 11(7), 743–748.
https://doi.org/10.1038/nmeth.2994</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 73c1014

Please sign in to comment.