Skip to content

Commit

Permalink
Merge pull request #4991 from openjournals/joss.05925
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Feb 7, 2024
2 parents 001eb5b + 1e89800 commit 661c31d
Show file tree
Hide file tree
Showing 3 changed files with 816 additions and 0 deletions.
302 changes: 302 additions & 0 deletions joss.05925/10.21105.joss.05925.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,302 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240207T222426-05ab3deab7d4338db1b2375a3451d2166fd485d8</doi_batch_id>
<timestamp>20240207222426</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>02</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>94</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Chi: A Python package for treatment response
modelling</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>David</given_name>
<surname>Augustin</surname>
<ORCID>https://orcid.org/0000-0002-4885-1088</ORCID>
</person_name>
</contributors>
<publication_date>
<month>02</month>
<day>07</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5925</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05925</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10510572</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5925</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05925</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05925</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05925.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="hucka:2003">
<article_title>The systems biology markup language (SBML): A
medium for representation and exchange of biochemical network
models</article_title>
<author>Hucka</author>
<journal_title>Bioinformatics</journal_title>
<issue>4</issue>
<volume>19</volume>
<doi>10.1093/bioinformatics/btg015</doi>
<cYear>2003</cYear>
<unstructured_citation>Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,
Bray, D., Cornish-Bowden, A., &amp; others. (2003). The systems biology
markup language (SBML): A medium for representation and exchange of
biochemical network models. Bioinformatics, 19(4), 524–531.
https://doi.org/10.1093/bioinformatics/btg015</unstructured_citation>
</citation>
<citation key="Augustin:2023">
<article_title>Filter inference: A scalable nonlinear mixed
effects inference approach for snapshot time series data</article_title>
<author>Augustin</author>
<journal_title>PLOS Computational Biology</journal_title>
<issue>5</issue>
<volume>19</volume>
<doi>10.1371/journal.pcbi.1011135</doi>
<cYear>2023</cYear>
<unstructured_citation>Augustin, D., Lambert, B., Wang, K.,
Walz, A.-C., Robinson, M., &amp; Gavaghan, D. (2023). Filter inference:
A scalable nonlinear mixed effects inference approach for snapshot time
series data. PLOS Computational Biology, 19(5), 1–29.
https://doi.org/10.1371/journal.pcbi.1011135</unstructured_citation>
</citation>
<citation key="SCHUCK:2015">
<article_title>Preclinical pharmacokinetic / pharmacodynamic
modeling and simulation in the pharmaceutical industry: An IQ consortium
survey examining the current landscape</article_title>
<author>Schuck</author>
<journal_title>The AAPS journal</journal_title>
<issue>2</issue>
<volume>17</volume>
<doi>10.1208/s12248-014-9716-2</doi>
<cYear>2015</cYear>
<unstructured_citation>Schuck, E., Bohnert, T., Chakravarty,
A., Damian-Iordache, V., Gibson, C., Hsu, C.-P., Heimbach, T.,
Krishnatry, A. S., Liederer, B. M., Lin, J., Maurer, T., Mettetal, J.
T., Mudra, D. R., Nijsen, M. J., Raybon, J., Schroeder, P., Schuck, V.,
Suryawanshi, S., Su, Y., … Wong, H. (2015). Preclinical pharmacokinetic
/ pharmacodynamic modeling and simulation in the pharmaceutical
industry: An IQ consortium survey examining the current landscape. The
AAPS Journal, 17(2), 462–473.
https://doi.org/10.1208/s12248-014-9716-2</unstructured_citation>
</citation>
<citation key="MORGAN:2018">
<article_title>Impact of a five-dimensional framework on
r&amp;d productivity at AstraZeneca</article_title>
<author>Morgan</author>
<journal_title>Nature Reviews Drug Discovery</journal_title>
<issue>3</issue>
<volume>17</volume>
<doi>10.1038/nrd.2017.244</doi>
<cYear>2018</cYear>
<unstructured_citation>Morgan, P., Brown, D. G., Lennard,
S., Anderton, M. J., Barrett, J. C., Eriksson, U., Fidock, M., Hamrén,
B., Johnson, A., March, R. E., Matcham, J., Mettetal, J., Nicholls, D.
J., Platz, S., Rees, S., Snowden, M. A., &amp; Pangalos, M. N. (2018).
Impact of a five-dimensional framework on r&amp;d productivity at
AstraZeneca. Nature Reviews Drug Discovery, 17(3), 167–181.
https://doi.org/10.1038/nrd.2017.244</unstructured_citation>
</citation>
<citation key="LAVE:2016">
<article_title>Translational PK/PD modeling to increase
probability of success in drug discovery and early
development</article_title>
<author>Lavé</author>
<journal_title>Drug Discovery Today:
Technologies</journal_title>
<volume>21-22</volume>
<doi>10.1016/j.ddtec.2016.11.005</doi>
<issn>1740-6749</issn>
<cYear>2016</cYear>
<unstructured_citation>Lavé, T., Caruso, A., Parrott, N.,
&amp; Walz, A. (2016). Translational PK/PD modeling to increase
probability of success in drug discovery and early development. Drug
Discovery Today: Technologies, 21-22, 27–34.
https://doi.org/10.1016/j.ddtec.2016.11.005</unstructured_citation>
</citation>
<citation key="Augustin:20232">
<article_title>Simulating clinical trials for model-informed
precision dosing: Using warfarin treatment as a use case</article_title>
<author>Augustin</author>
<journal_title>Frontiers in Pharmacology</journal_title>
<volume>14</volume>
<doi>10.3389/fphar.2023.1270443</doi>
<issn>1663-9812</issn>
<cYear>2023</cYear>
<unstructured_citation>Augustin, D., Lambert, B., Robinson,
M., Wang, K., &amp; Gavaghan, D. (2023). Simulating clinical trials for
model-informed precision dosing: Using warfarin treatment as a use case.
Frontiers in Pharmacology, 14.
https://doi.org/10.3389/fphar.2023.1270443</unstructured_citation>
</citation>
<citation key="Clerx:2019">
<article_title>Probabilistic inference on noisy time series
(PINTS)</article_title>
<author>Clerx</author>
<journal_title>Journal of Open Research
Software</journal_title>
<doi>10.5334/jors.252</doi>
<cYear>2019</cYear>
<unstructured_citation>Clerx, M., Robinson, M., Lambert, B.,
Lei, C. L., Ghosh, S., Mirams, G. R., &amp; Gavaghan, D. J. (2019).
Probabilistic inference on noisy time series (PINTS). Journal of Open
Research Software.
https://doi.org/10.5334/jors.252</unstructured_citation>
</citation>
<citation key="keizer2013modeling">
<article_title>Modeling and simulation workbench for NONMEM:
Tutorial on pirana, PsN, and xpose</article_title>
<author>Keizer</author>
<journal_title>CPT: pharmacometrics &amp; systems
pharmacology</journal_title>
<issue>6</issue>
<volume>2</volume>
<doi>10.1038/psp.2013.24</doi>
<cYear>2013</cYear>
<unstructured_citation>Keizer, R. J., Karlsson, M., &amp;
Hooker, A. (2013). Modeling and simulation workbench for NONMEM:
Tutorial on pirana, PsN, and xpose. CPT: Pharmacometrics &amp; Systems
Pharmacology, 2(6), 1–9.
https://doi.org/10.1038/psp.2013.24</unstructured_citation>
</citation>
<citation key="hosseini2018gpkpdsim">
<article_title>gPKPDSim: A SimBiology-based GUI application
for PKPD modeling in drug development</article_title>
<author>Hosseini</author>
<journal_title>Journal of pharmacokinetics and
pharmacodynamics</journal_title>
<volume>45</volume>
<doi>10.1007/s10928-017-9562-9</doi>
<cYear>2018</cYear>
<unstructured_citation>Hosseini, I., Gajjala, A., Bumbaca
Yadav, D., Sukumaran, S., Ramanujan, S., Paxson, R., &amp; Gadkar, K.
(2018). gPKPDSim: A SimBiology-based GUI application for PKPD modeling
in drug development. Journal of Pharmacokinetics and Pharmacodynamics,
45, 259–275.
https://doi.org/10.1007/s10928-017-9562-9</unstructured_citation>
</citation>
<citation key="sorzano2021scipion">
<article_title>Scipion PKPD: An open-source platform for
biopharmaceutics, pharmacokinetics and pharmacodynamics data
analysis</article_title>
<author>Sorzano</author>
<journal_title>Pharmaceutical Research</journal_title>
<issue>7</issue>
<volume>38</volume>
<doi>10.1007/s11095-021-03065-1</doi>
<cYear>2021</cYear>
<unstructured_citation>Sorzano, C., Fonseca-Reyna, Y., &amp;
Cruz-Moreno, M. P. de la. (2021). Scipion PKPD: An open-source platform
for biopharmaceutics, pharmacokinetics and pharmacodynamics data
analysis. Pharmaceutical Research, 38(7), 1169–1178.
https://doi.org/10.1007/s11095-021-03065-1</unstructured_citation>
</citation>
<citation key="rackauckas2020accelerated">
<article_title>Accelerated predictive healthcare analytics
with pumas, a high performance pharmaceutical modeling and simulation
platform</article_title>
<author>Rackauckas</author>
<journal_title>BioRxiv</journal_title>
<doi>10.1101/2020.11.28.402297</doi>
<cYear>2020</cYear>
<unstructured_citation>Rackauckas, C., Ma, Y., Noack, A.,
Dixit, V., Mogensen, P. K., Byrne, S., Maddhashiya, S., Santiago
Calderón, J. B., Nyberg, J., Gobburu, J. V., &amp; others. (2020).
Accelerated predictive healthcare analytics with pumas, a high
performance pharmaceutical modeling and simulation platform. BioRxiv,
2020–2011.
https://doi.org/10.1101/2020.11.28.402297</unstructured_citation>
</citation>
<citation key="clerx2016myokit">
<article_title>Myokit: A simple interface to cardiac
cellular electrophysiology</article_title>
<author>Clerx</author>
<journal_title>Progress in biophysics and molecular
biology</journal_title>
<issue>1-3</issue>
<volume>120</volume>
<doi>10.1016/j.pbiomolbio.2015.12.008</doi>
<cYear>2016</cYear>
<unstructured_citation>Clerx, M., Collins, P., De Lange, E.,
&amp; Volders, P. G. (2016). Myokit: A simple interface to cardiac
cellular electrophysiology. Progress in Biophysics and Molecular
Biology, 120(1-3), 100–114.
https://doi.org/10.1016/j.pbiomolbio.2015.12.008</unstructured_citation>
</citation>
<citation key="2020SciPy-NMeth">
<article_title>SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python</article_title>
<author>Virtanen</author>
<journal_title>Nature Methods</journal_title>
<volume>17</volume>
<doi>10.1038/s41592-019-0686-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Virtanen, P., Gommers, R., Oliphant,
T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17,
261–272.
https://doi.org/10.1038/s41592-019-0686-2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 661c31d

Please sign in to comment.