Skip to content

Commit

Permalink
Merge pull request #5189 from openjournals/joss.06321
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Mar 27, 2024
2 parents 21691ca + 5091399 commit 4f1d204
Show file tree
Hide file tree
Showing 4 changed files with 752 additions and 0 deletions.
283 changes: 283 additions & 0 deletions joss.06321/10.21105.joss.06321.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240327T234716-53783c8ea0ec973b06e30e6b878e3b11d4af281c</doi_batch_id>
<timestamp>20240327234716</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>95</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>TDApplied: An R package for machine learning and
inference with persistence diagrams</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Shael</given_name>
<surname>Brown</surname>
<ORCID>https://orcid.org/0000-0001-8868-2867</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Reza</given_name>
<surname>Farivar-Mohseni</surname>
<ORCID>https://orcid.org/0000-0002-3123-2627</ORCID>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>27</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6321</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06321</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10814141</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6321</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06321</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06321</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06321.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="R-TDA">
<volume_title>TDA: Statistical tools for topological data
analysis</volume_title>
<author>Fasy</author>
<cYear>2021</cYear>
<unstructured_citation>Fasy, B. T., Kim, J., Lecci, F.,
Maria, C., Millman, D. L., &amp; Rouvreau., V. (2021). TDA: Statistical
tools for topological data analysis.
https://CRAN.R-project.org/package=TDA</unstructured_citation>
</citation>
<citation key="R-TDAstats">
<volume_title>TDAstats: Pipeline for topological data
analysis</volume_title>
<author>Wadhwa</author>
<cYear>2019</cYear>
<unstructured_citation>Wadhwa, R., Dhawan, A., Williamson,
D., &amp; Scott, J. (2019). TDAstats: Pipeline for topological data
analysis. https://github.com/rrrlw/TDAstats</unstructured_citation>
</citation>
<citation key="TDAstats2018">
<article_title>TDAstats: R pipeline for computing persistent
homology in topological data analysis</article_title>
<author>Wadhwa</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>28</issue>
<volume>3</volume>
<doi>10.21105/joss.00860</doi>
<cYear>2018</cYear>
<unstructured_citation>Wadhwa, R. R., Williamson, D. F. K.,
Dhawan, A., &amp; Scott, J. G. (2018). TDAstats: R pipeline for
computing persistent homology in topological data analysis. Journal of
Open Source Software, 3(28), 860.
https://doi.org/10.21105/joss.00860</unstructured_citation>
</citation>
<citation key="PHoriginal">
<article_title>Topological persistence and
simplification</article_title>
<author>Edelsbrunner</author>
<journal_title>Discrete &amp; Computational
Geometry</journal_title>
<volume>28</volume>
<doi>10.1007/s00454-002-2885-2</doi>
<cYear>2000</cYear>
<unstructured_citation>Edelsbrunner, H., Letscher, D., &amp;
Zomorodian, A. (2000). Topological persistence and simplification.
Discrete &amp; Computational Geometry, 28, 511–533.
https://doi.org/10.1007/s00454-002-2885-2</unstructured_citation>
</citation>
<citation key="ComputingPH">
<article_title>Computing persistent homology</article_title>
<author>Zomorodian</author>
<journal_title>Discrete and Computational
Geometry</journal_title>
<volume>33</volume>
<doi>10.1007/s00454-004-1146-y</doi>
<cYear>2005</cYear>
<unstructured_citation>Zomorodian, A., &amp; Carlsson, G.
(2005). Computing persistent homology. Discrete and Computational
Geometry, 33, 249–274.
https://doi.org/10.1007/s00454-004-1146-y</unstructured_citation>
</citation>
<citation key="R-devtools">
<volume_title>devtools: Tools to make developing R packages
easier</volume_title>
<author>Wickham</author>
<cYear>2021</cYear>
<unstructured_citation>Wickham, H., Hester, J., Chang, W.,
&amp; Bryan, J. (2021). devtools: Tools to make developing R packages
easier.
https://CRAN.R-project.org/package=devtools</unstructured_citation>
</citation>
<citation key="Robinson_Turner">
<article_title>Hypothesis testing for topological data
analysis</article_title>
<author>Robinson</author>
<journal_title>Journal of Applied and Computational
Topology</journal_title>
<volume>1</volume>
<doi>10.1007/s41468-017-0008-7</doi>
<cYear>2017</cYear>
<unstructured_citation>Robinson, A., &amp; Turner, K.
(2017). Hypothesis testing for topological data analysis. Journal of
Applied and Computational Topology, 1.
https://doi.org/10.1007/s41468-017-0008-7</unstructured_citation>
</citation>
<citation key="persistence_fisher">
<article_title>Persistence Fisher kernel: A Riemannian
manifold kernel for persistence diagrams</article_title>
<author>Le</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>31</volume>
<doi>10.48550/arXiv.1802.03569</doi>
<cYear>2018</cYear>
<unstructured_citation>Le, T., &amp; Yamada, M. (2018).
Persistence Fisher kernel: A Riemannian manifold kernel for persistence
diagrams. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, &amp; R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 31). Curran Associates, Inc.
https://doi.org/10.48550/arXiv.1802.03569</unstructured_citation>
</citation>
<citation key="TDA_ADHD">
<article_title>Topological data analysis reveals robust
alterations in the whole-brain and frontal lobe functional connectomes
in attention-deficit/hyperactivity disorder</article_title>
<author>Gracia-Tabuenca</author>
<journal_title>eneuro</journal_title>
<doi>10.1523/eneuro.0543-19.2020</doi>
<cYear>2020</cYear>
<unstructured_citation>Gracia-Tabuenca, Z., Diaz-Patino, J.
C., Arelio, I., &amp; Alcauter, S. (2020). Topological data analysis
reveals robust alterations in the whole-brain and frontal lobe
functional connectomes in attention-deficit/hyperactivity disorder.
Eneuro.
https://doi.org/10.1523/eneuro.0543-19.2020</unstructured_citation>
</citation>
<citation key="R-testthat">
<article_title>testthat: Get started with
testing</article_title>
<author>Wickham</author>
<journal_title>The R Journal</journal_title>
<volume>3</volume>
<doi>10.32614/rj-2011-002</doi>
<cYear>2011</cYear>
<unstructured_citation>Wickham, H. (2011). testthat: Get
started with testing. The R Journal, 3, 5–10.
https://doi.org/10.32614/rj-2011-002</unstructured_citation>
</citation>
<citation key="TDA_chemistry">
<article_title>Machine learning with persistent homology and
chemical word embeddings improves prediction accuracy and
interpretability in metal-organic frameworks</article_title>
<author>Krishnapriyan</author>
<journal_title>Nature Scientific Report</journal_title>
<volume>11</volume>
<doi>10.1038/s41598-021-88027-8</doi>
<cYear>2021</cYear>
<unstructured_citation>Krishnapriyan, A. S. et al. (2021).
Machine learning with persistent homology and chemical word embeddings
improves prediction accuracy and interpretability in metal-organic
frameworks. Nature Scientific Report, 11.
https://doi.org/10.1038/s41598-021-88027-8</unstructured_citation>
</citation>
<citation key="word_embeddings">
<article_title>Unsupervised geometric and topological
approaches for cross-lingual sentence representation and
comparison</article_title>
<author>Haim Meirom</author>
<journal_title>Proceedings of the 7th workshop on
representation learning for NLP</journal_title>
<doi>10.18653/v1/2022.repl4nlp-1.18</doi>
<cYear>2022</cYear>
<unstructured_citation>Haim Meirom, S., &amp; Bobrowski, O.
(2022). Unsupervised geometric and topological approaches for
cross-lingual sentence representation and comparison. Proceedings of the
7th Workshop on Representation Learning for NLP, 173–183.
https://doi.org/10.18653/v1/2022.repl4nlp-1.18</unstructured_citation>
</citation>
<citation key="Yash">
<article_title>Topological data analysis in medical imaging:
Current state of the art</article_title>
<author>Singh</author>
<journal_title>Insights into Imaging</journal_title>
<issue>1</issue>
<volume>14</volume>
<doi>10.1186/s13244-023-01413-w</doi>
<cYear>2023</cYear>
<unstructured_citation>Singh, Y., Farrelly, C. M., Hathaway,
Q. A., Leiner, T., Jagtap, J., Carlsson, G. E., &amp; Erickson, B. J.
(2023). Topological data analysis in medical imaging: Current state of
the art. Insights into Imaging, 14(1), 58.
https://doi.org/10.1186/s13244-023-01413-w</unstructured_citation>
</citation>
<citation key="Cox2008">
<article_title>Multidimensional scaling</article_title>
<author>Cox</author>
<journal_title>Handbook of data
visualization</journal_title>
<doi>10.1007/978-3-540-33037-0_14</doi>
<isbn>978-3-540-33037-0</isbn>
<cYear>2008</cYear>
<unstructured_citation>Cox, M. A. A., &amp; Cox, T. F.
(2008). Multidimensional scaling. In Handbook of data visualization (pp.
315–347). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-33037-0_14</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 4f1d204

Please sign in to comment.