Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support APCNet #299

Merged
merged 7 commits into from
Dec 18, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ Supported methods:
- [x] [EncNet](configs/encnet)
- [x] [CCNet](configs/ccnet)
- [x] [DANet](configs/danet)
- [x] [APCNet](configs/apcnet)
- [x] [GCNet](configs/gcnet)
- [x] [ANN](configs/ann)
- [x] [OCRNet](configs/ocrnet)
Expand Down
44 changes: 44 additions & 0 deletions configs/_base_/models/apcnet_r50-d8.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained='open-mmlab://resnet50_v1c',
backbone=dict(
type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=dict(
type='APCHead',
in_channels=2048,
in_index=3,
channels=512,
pool_scales=(1, 2, 3, 6),
dropout_ratio=0.1,
num_classes=19,
norm_cfg=dict(type='SyncBN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=1024,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
37 changes: 37 additions & 0 deletions configs/apcnet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Adaptive Pyramid Context Network for Semantic Segmentation

## Introduction

```latex
@InProceedings{He_2019_CVPR,
author = {He, Junjun and Deng, Zhongying and Zhou, Lei and Wang, Yali and Qiao, Yu},
title = {Adaptive Pyramid Context Network for Semantic Segmentation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
```

## Results and models

### Cityscapes

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
|--------|----------|-----------|--------:|----------|----------------|------:|--------------:|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APCNet | R-50-D8 | 512x1024 | 40000 | 7.7 | 3.57 | 78.02 | 79.26 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes-20201214_115717.log.json) |
| APCNet | R-101-D8 | 512x1024 | 40000 | 11.2 | 2.15 | 79.08 | 80.34 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes-20201214_115716.log.json) |
| APCNet | R-50-D8 | 769x769 | 40000 | 8.7 | 1.52 | 77.89 | 79.75 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes-20201214_115717.log.json) |
| APCNet | R-101-D8 | 769x769 | 40000 | 12.7 | 1.03 | 77.96 | 79.24 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes-20201214_115718.log.json) |
| APCNet | R-50-D8 | 512x1024 | 80000 | - | - | 78.96 | 79.94 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes-20201214_115716.log.json) |
| APCNet | R-101-D8 | 512x1024 | 80000 | - | - | 79.64 | 80.61 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes-20201214_115705.log.json) |
| APCNet | R-50-D8 | 769x769 | 80000 | - | - | 78.79 | 80.35 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes-20201214_115718.log.json) |
| APCNet | R-101-D8 | 769x769 | 80000 | - | - | 78.45 | 79.91 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes-20201214_115716.log.json) |

### ADE20K

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
|--------|----------|-----------|--------:|----------|----------------|------:|--------------:|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APCNet | R-50-D8 | 512x512 | 80000 | 10.1 | 19.61 | 42.20 | 43.30 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k-20201214_115705.log.json) |
| APCNet | R-101-D8 | 512x512 | 80000 | 13.6 | 13.10 | 45.54 | 46.65 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k-20201214_115704.log.json) |
| APCNet | R-50-D8 | 512x512 | 160000 | - | - | 43.40 | 43.94 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k-20201214_115706.log.json) |
| APCNet | R-101-D8 | 512x512 | 160000 | - | - | 45.41 | 46.63 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k-20201214_115705.log.json) |
2 changes: 2 additions & 0 deletions configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
_base_ = './apcnet_r50-d8_512x1024_40k_cityscapes.py'
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
2 changes: 2 additions & 0 deletions configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
_base_ = './apcnet_r50-d8_512x1024_80k_cityscapes.py'
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
2 changes: 2 additions & 0 deletions configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
_base_ = './apcnet_r50-d8_512x512_160k_ade20k.py'
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
2 changes: 2 additions & 0 deletions configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
_base_ = './apcnet_r50-d8_512x512_80k_ade20k.py'
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
2 changes: 2 additions & 0 deletions configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
_base_ = './apcnet_r50-d8_769x769_40k_cityscapes.py'
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
2 changes: 2 additions & 0 deletions configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
_base_ = './apcnet_r50-d8_769x769_80k_cityscapes.py'
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
4 changes: 4 additions & 0 deletions configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
_base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
]
4 changes: 4 additions & 0 deletions configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
_base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
7 changes: 7 additions & 0 deletions configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
test_cfg = dict(mode='whole')
7 changes: 7 additions & 0 deletions configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
test_cfg = dict(mode='whole')
9 changes: 9 additions & 0 deletions configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
_base_ = [
'../_base_/models/apcnet_r50-d8.py',
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_40k.py'
]
model = dict(
decode_head=dict(align_corners=True),
auxiliary_head=dict(align_corners=True))
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
9 changes: 9 additions & 0 deletions configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
_base_ = [
'../_base_/models/apcnet_r50-d8.py',
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_80k.py'
]
model = dict(
decode_head=dict(align_corners=True),
auxiliary_head=dict(align_corners=True))
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
4 changes: 4 additions & 0 deletions docs/model_zoo.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,10 @@ Please refer to [CCNet](https://github.com/open-mmlab/mmsegmentation/blob/master

Please refer to [DANet](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/danet) for details.

### APCNet

Please refer to [APCNet](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet) for details.

### HRNet

Please refer to [HRNet](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet) for details.
Expand Down
3 changes: 2 additions & 1 deletion mmseg/models/decode_heads/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .ann_head import ANNHead
from .apc_head import APCHead
from .aspp_head import ASPPHead
from .cc_head import CCHead
from .da_head import DAHead
Expand All @@ -21,5 +22,5 @@
'FCNHead', 'PSPHead', 'ASPPHead', 'PSAHead', 'NLHead', 'GCHead', 'CCHead',
'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead',
'EncHead', 'DepthwiseSeparableFCNHead', 'FPNHead', 'EMAHead', 'DNLHead',
'PointHead'
'PointHead', 'APCHead'
]
158 changes: 158 additions & 0 deletions mmseg/models/decode_heads/apc_head.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule

from mmseg.ops import resize
from ..builder import HEADS
from .decode_head import BaseDecodeHead


class ACM(nn.Module):
"""Adaptive Context Module used in APCNet.

Args:
pool_scale (int): Pooling scale used in Adaptive Context
Module to extract region fetures.
fusion (bool): Add one conv to fuse residual feature.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
conv_cfg (dict | None): Config of conv layers.
norm_cfg (dict | None): Config of norm layers.
act_cfg (dict): Config of activation layers.
"""

def __init__(self, pool_scale, fusion, in_channels, channels, conv_cfg,
norm_cfg, act_cfg):
super(ACM, self).__init__()
self.pool_scale = pool_scale
self.fusion = fusion
self.in_channels = in_channels
self.channels = channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.pooled_redu_conv = ConvModule(
self.in_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)

self.input_redu_conv = ConvModule(
self.in_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)

self.global_info = ConvModule(
self.channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)

self.gla = nn.Conv2d(self.channels, self.pool_scale**2, 1, 1, 0)

self.residual_conv = ConvModule(
self.channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)

if self.fusion:
self.fusion_conv = ConvModule(
self.channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)

def forward(self, x):
"""Forward function."""
pooled_x = F.adaptive_avg_pool2d(x, self.pool_scale)
# [batch_size, channels, h, w]
x = self.input_redu_conv(x)
# [batch_size, channels, pool_scale, pool_scale]
pooled_x = self.pooled_redu_conv(pooled_x)
batch_size = x.size(0)
# [batch_size, pool_scale * pool_scale, channels]
pooled_x = pooled_x.view(batch_size, self.channels,
-1).permute(0, 2, 1).contiguous()
# [batch_size, h * w, pool_scale * pool_scale]
affinity_matrix = self.gla(x + resize(
self.global_info(F.adaptive_avg_pool2d(x, 1)), size=x.shape[2:])
).permute(0, 2, 3, 1).reshape(
batch_size, -1, self.pool_scale**2)
affinity_matrix = F.sigmoid(affinity_matrix)
# [batch_size, h * w, channels]
z_out = torch.matmul(affinity_matrix, pooled_x)
# [batch_size, channels, h * w]
z_out = z_out.permute(0, 2, 1).contiguous()
# [batch_size, channels, h, w]
z_out = z_out.view(batch_size, self.channels, x.size(2), x.size(3))
z_out = self.residual_conv(z_out)
z_out = F.relu(z_out + x)
if self.fusion:
z_out = self.fusion_conv(z_out)

return z_out


@HEADS.register_module()
class APCHead(BaseDecodeHead):
"""Adaptive Pyramid Context Network for Semantic Segmentation.

This head is the implementation of
`APCNet <https://openaccess.thecvf.com/content_CVPR_2019/papers/\
He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_\
CVPR_2019_paper.pdf>`_.

Args:
pool_scales (tuple[int]): Pooling scales used in Adaptive Context
Module. Default: (1, 2, 3, 6).
fusion (bool): Add one conv to fuse residual feature.
"""

def __init__(self, pool_scales=(1, 2, 3, 6), fusion=True, **kwargs):
super(APCHead, self).__init__(**kwargs)
assert isinstance(pool_scales, (list, tuple))
self.pool_scales = pool_scales
self.fusion = fusion
acm_modules = []
for pool_scale in self.pool_scales:
acm_modules.append(
ACM(pool_scale,
self.fusion,
self.in_channels,
self.channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.acm_modules = nn.ModuleList(acm_modules)
self.bottleneck = ConvModule(
self.in_channels + len(pool_scales) * self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)

def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
acm_outs = [x]
for acm_module in self.acm_modules:
acm_outs.append(acm_module(x))
acm_outs = torch.cat(acm_outs, dim=1)
output = self.bottleneck(acm_outs)
output = self.cls_seg(output)
return output
Loading