Skip to content

Commit

Permalink
[Fix] fix patch_embed and pos_embed mismatch error (#685)
Browse files Browse the repository at this point in the history
* fix patch_embed and pos_embed mismatch error

* add docstring

* update unittest

* use downsampled image shape

* use tuple

* remove unused parameters and add doc

* fix init weights function

* revise docstring

* Update vit.py

If -> Whether

* fix lint

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
  • Loading branch information
谢昕辰 and Junjun2016 authored Jul 19, 2021
1 parent 5097d55 commit dff7a96
Show file tree
Hide file tree
Showing 3 changed files with 48 additions and 43 deletions.
1 change: 0 additions & 1 deletion configs/_base_/models/upernet_vit-b16_ln_mln.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@
norm_cfg=dict(type='LN', eps=1e-6),
act_cfg=dict(type='GELU'),
norm_eval=False,
out_shape='NCHW',
interpolate_mode='bicubic'),
neck=dict(
type='MultiLevelNeck',
Expand Down
68 changes: 34 additions & 34 deletions mmseg/models/backbones/vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,8 +118,10 @@ class VisionTransformer(BaseModule):
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.0
drop_path_rate (float): stochastic depth rate. Default 0.0
with_cls_token (bool): If concatenating class token into image tokens
as transformer input. Default: True.
with_cls_token (bool): Whether concatenating class token into image
tokens as transformer input. Default: True.
output_cls_token (bool): Whether output the cls_token. If set True,
`with_cls_token` must be True. Default: False.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN')
act_cfg (dict): The activation config for FFNs.
Expand All @@ -128,8 +130,6 @@ class VisionTransformer(BaseModule):
Default: False.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Default: False.
out_shape (str): Select the output format of feature information.
Default: NCHW.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Default: bicubic.
num_fcs (int): The number of fully-connected layers for FFNs.
Expand Down Expand Up @@ -160,11 +160,11 @@ def __init__(self,
attn_drop_rate=0.,
drop_path_rate=0.,
with_cls_token=True,
output_cls_token=False,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
patch_norm=False,
final_norm=False,
out_shape='NCHW',
interpolate_mode='bicubic',
num_fcs=2,
norm_eval=False,
Expand All @@ -185,8 +185,9 @@ def __init__(self,

assert pretrain_style in ['timm', 'mmcls']

assert out_shape in ['NLC',
'NCHW'], 'output shape must be "NLC" or "NCHW".'
if output_cls_token:
assert with_cls_token is True, f'with_cls_token must be True if' \
f'set output_cls_token to True, but got {with_cls_token}'

if isinstance(pretrained, str) or pretrained is None:
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
Expand All @@ -196,7 +197,6 @@ def __init__(self,

self.img_size = img_size
self.patch_size = patch_size
self.out_shape = out_shape
self.interpolate_mode = interpolate_mode
self.norm_eval = norm_eval
self.with_cp = with_cp
Expand All @@ -218,6 +218,7 @@ def __init__(self,
(img_size[1] // patch_size)

self.with_cls_token = with_cls_token
self.output_cls_token = output_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dims))
Expand Down Expand Up @@ -253,7 +254,6 @@ def __init__(self,
batch_first=True))

self.final_norm = final_norm
self.out_shape = out_shape
if final_norm:
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, embed_dims, postfix=1)
Expand Down Expand Up @@ -290,8 +290,9 @@ def init_weights(self):
pos_size = int(
math.sqrt(state_dict['pos_embed'].shape[1] - 1))
state_dict['pos_embed'] = self.resize_pos_embed(
state_dict['pos_embed'], (h, w), (pos_size, pos_size),
self.patch_size, self.interpolate_mode)
state_dict['pos_embed'],
(h // self.patch_size, w // self.patch_size),
(pos_size, pos_size), self.interpolate_mode)

self.load_state_dict(state_dict, False)

Expand All @@ -317,16 +318,15 @@ def init_weights(self):
constant_init(m.bias, 0)
constant_init(m.weight, 1.0)

def _pos_embeding(self, img, patched_img, pos_embed):
def _pos_embeding(self, patched_img, hw_shape, pos_embed):
"""Positiong embeding method.
Resize the pos_embed, if the input image size doesn't match
the training size.
Args:
img (torch.Tensor): The inference image tensor, the shape
must be [B, C, H, W].
patched_img (torch.Tensor): The patched image, it should be
shape of [B, L1, C].
hw_shape (tuple): The downsampled image resolution.
pos_embed (torch.Tensor): The pos_embed weighs, it should be
shape of [B, L2, c].
Return:
Expand All @@ -344,36 +344,36 @@ def _pos_embeding(self, img, patched_img, pos_embed):
raise ValueError(
'Unexpected shape of pos_embed, got {}.'.format(
pos_embed.shape))
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:],
(pos_h, pos_w), self.patch_size,
pos_embed = self.resize_pos_embed(pos_embed, hw_shape,
(pos_h, pos_w),
self.interpolate_mode)
return self.drop_after_pos(patched_img + pos_embed)

@staticmethod
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode):
"""Resize pos_embed weights.
Resize pos_embed using bicubic interpolate method.
Args:
pos_embed (torch.Tensor): pos_embed weights.
input_shpae (tuple): Tuple for (input_h, intput_w).
pos_shape (tuple): Tuple for (pos_h, pos_w).
patch_size (int): Patch size.
pos_embed (torch.Tensor): Position embedding weights.
input_shpae (tuple): Tuple for (downsampled input image height,
downsampled input image width).
pos_shape (tuple): The resolution of downsampled origin training
image.
mode (str): Algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'nearest'``
Return:
torch.Tensor: The resized pos_embed of shape [B, L_new, C]
"""
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
input_h, input_w = input_shpae
pos_h, pos_w = pos_shape
cls_token_weight = pos_embed[:, 0]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(
pos_embed_weight,
size=[input_h // patch_size, input_w // patch_size],
align_corners=False,
mode=mode)
pos_embed_weight, size=input_shpae, align_corners=False, mode=mode)
cls_token_weight = cls_token_weight.unsqueeze(1)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
Expand All @@ -382,12 +382,12 @@ def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
def forward(self, inputs):
B = inputs.shape[0]

x = self.patch_embed(inputs)

x, hw_shape = self.patch_embed(inputs), (self.patch_embed.DH,
self.patch_embed.DW)
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self._pos_embeding(inputs, x, self.pos_embed)
x = self._pos_embeding(x, hw_shape, self.pos_embed)

if not self.with_cls_token:
# Remove class token for transformer encoder input
Expand All @@ -405,11 +405,11 @@ def forward(self, inputs):
out = x[:, 1:]
else:
out = x
if self.out_shape == 'NCHW':
B, _, C = out.shape
out = out.reshape(B, inputs.shape[2] // self.patch_size,
inputs.shape[3] // self.patch_size,
C).permute(0, 3, 1, 2)
B, _, C = out.shape
out = out.reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2)
if self.output_cls_token:
out = [out, x[:, 0]]
outs.append(out)

return tuple(outs)
Expand Down
22 changes: 14 additions & 8 deletions tests/test_models/test_backbones/test_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,8 @@ def test_vit_backbone():
VisionTransformer(pretrained=123)

with pytest.raises(AssertionError):
# out_shape must be 'NLC' or 'NCHW;'
VisionTransformer(out_shape='NCL')
# with_cls_token must be True when output_cls_token == True
VisionTransformer(with_cls_token=False, output_cls_token=True)

# Test img_size isinstance tuple
imgs = torch.randn(1, 3, 224, 224)
Expand Down Expand Up @@ -88,6 +88,11 @@ def test_vit_backbone():
feat = model(imgs)
assert feat[-1].shape == (1, 768, 7, 14)

# Test irregular input image
imgs = torch.randn(1, 3, 234, 345)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 15, 22)

# Test with_cp=True
model = VisionTransformer(with_cp=True)
imgs = torch.randn(1, 3, 224, 224)
Expand All @@ -100,12 +105,6 @@ def test_vit_backbone():
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)

# Test out_shape == 'NLC'
model = VisionTransformer(out_shape='NLC')
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 196, 768)

# Test final norm
model = VisionTransformer(final_norm=True)
imgs = torch.randn(1, 3, 224, 224)
Expand All @@ -117,3 +116,10 @@ def test_vit_backbone():
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)

# Test output_cls_token
model = VisionTransformer(with_cls_token=True, output_cls_token=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0][0].shape == (1, 768, 14, 14)
assert feat[0][1].shape == (1, 768)

0 comments on commit dff7a96

Please sign in to comment.