Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Refactor] Refactor random degradation #1583

Merged
merged 3 commits into from
Jan 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion configs/_base_/datasets/decompression_test_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
imdecode_backend='cv2'),
dict(
type='RandomJPEGCompression',
params=dict(quality=[quality, quality], color_type='color'),
params=dict(quality=[quality, quality]),
bgr2rgb=True,
keys=['img']),
dict(type='PackEditInputs')
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@
color_type='color',
channel_order='rgb'),
dict(type='SetValues', dictionary=dict(scale=scale)),
dict(type='RescaleToZeroOne', keys=['gt']),
dict(type='CopyValues', src_keys=['gt'], dst_keys=['img']),
dict(
type='RandomBlur',
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,6 @@
dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
dict(type='SetValues', dictionary=dict(scale=scale)),
dict(type='FixedCrop', keys=['gt'], crop_size=(256, 256)),
dict(type='RescaleToZeroOne', keys=['gt']),
dict(type='Flip', keys=['gt'], flip_ratio=0.5, direction='horizontal'),
dict(type='Flip', keys=['gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['gt'], transpose_ratio=0.5),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,6 @@
keys=['gt'],
crop_size=(gt_crop_size, gt_crop_size),
random_crop=True),
dict(type='RescaleToZeroOne', keys=['gt']),
dict(
type='UnsharpMasking',
keys=['gt'],
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@
else:
test_pipeline[0]['color_type'] = 'grayscale'
test_pipeline[1]['color_type'] = 'grayscale'
test_pipeline[2]['params']['color_type'] = 'grayscale'
test_pipeline[2]['color_type'] = 'grayscale'

# optimizer
optim_wrapper = dict(
Expand Down
5 changes: 3 additions & 2 deletions mmedit/datasets/transforms/aug_pixel.py
Original file line number Diff line number Diff line change
Expand Up @@ -574,10 +574,11 @@ def _unsharp_masking(self, imgs):

outputs = []
for img in imgs:
img = img.astype(np.float32)
residue = img - cv2.filter2D(img, -1, self.kernel)
mask = np.float32(np.abs(residue) * 255 > self.threshold)
mask = np.float32(np.abs(residue) > self.threshold)
soft_mask = cv2.filter2D(mask, -1, self.kernel)
sharpened = np.clip(img + self.weight * residue, 0, 1)
sharpened = np.clip(img + self.weight * residue, 0, 255)

outputs.append(soft_mask * sharpened + (1 - soft_mask) * img)

Expand Down
16 changes: 8 additions & 8 deletions mmedit/datasets/transforms/random_degradations.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,9 +165,10 @@ class RandomJPEGCompression:
bgr2rgb (str): Whether change channel order. Default: False.
"""

def __init__(self, params, keys, bgr2rgb=False):
def __init__(self, params, keys, color_type='color', bgr2rgb=False):
self.keys = keys
self.params = params
self.color_type = color_type
self.bgr2rgb = bgr2rgb

def _apply_random_compression(self, imgs):
Expand All @@ -178,19 +179,18 @@ def _apply_random_compression(self, imgs):

# determine initial compression level and the step size
quality = self.params['quality']
color_type = self.params['color_type']
quality_step = self.params.get('quality_step', 0)
jpeg_param = round(np.random.uniform(quality[0], quality[1]))

# apply jpeg compression
outputs = []
for img in imgs:
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_param]
if self.bgr2rgb and color_type == 'color':
if self.bgr2rgb and self.color_type == 'color':
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
_, img_encoded = cv2.imencode('.jpg', img, encode_param)

if color_type == 'color':
if self.color_type == 'color':
img_encoded = cv2.imdecode(img_encoded, 1)
if self.bgr2rgb:
img_encoded = cv2.cvtColor(img_encoded, cv2.COLOR_BGR2RGB)
Expand Down Expand Up @@ -281,7 +281,7 @@ def _apply_poisson_noise(self, imgs):

outputs = []
for img in imgs:
noise = img.copy()
noise = np.float32(img.copy())
if is_gray_noise:
noise = cv2.cvtColor(noise[..., [2, 1, 0]], cv2.COLOR_BGR2GRAY)
noise = noise[..., np.newaxis]
Expand Down Expand Up @@ -498,7 +498,7 @@ def _apply_random_compression(self, imgs):
stream.bit_rate = bitrate

for img in imgs:
img = (255 * img).astype(np.uint8)
img = img.astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img, format='rgb24')
frame.pict_type = 'NONE'
for packet in stream.encode(frame):
Expand All @@ -512,8 +512,8 @@ def _apply_random_compression(self, imgs):
with av.open(buf, 'r', 'mp4') as container:
if container.streams.video:
for frame in container.decode(**{'video': 0}):
outputs.append(
frame.to_rgb().to_ndarray().astype(np.float32) / 255.)
outputs.append(frame.to_rgb().to_ndarray().astype(
np.float32))

return outputs

Expand Down
8 changes: 4 additions & 4 deletions mmedit/models/editors/real_esrgan/real_esrgan.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,16 +192,16 @@ def extract_gt_data(self, data_samples):
gt_imgs = [data_sample.gt_img.data for data_sample in data_samples]
gt = torch.stack(gt_imgs)
gt_unsharp = [
data_sample.gt_unsharp.data for data_sample in data_samples
data_sample.gt_unsharp.data / 255. for data_sample in data_samples
]
gt_unsharp = torch.stack(gt_unsharp)

gt_pixel, gt_percep, gt_gan = gt.clone(), gt.clone(), gt.clone()
if self.is_use_sharpened_gt_in_pixel:
gt_pixel = gt_unsharp
gt_pixel = gt_unsharp.clone()
if self.is_use_sharpened_gt_in_percep:
gt_percep = gt_unsharp
gt_percep = gt_unsharp.clone()
if self.is_use_sharpened_gt_in_gan:
gt_gan = gt_unsharp
gt_gan = gt_unsharp.clone()

return gt_pixel, gt_percep, gt_gan