Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support secondary model in disco-diffusion #1368

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 116 additions & 0 deletions mmedit/models/editors/disco_diffusion/secondary_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
from functools import partial
import torch.nn as nn
import torch
import math
from mmedit.registry import MODELS

def append_dims(x, n):
return x[(Ellipsis, *(None,) * (n - x.ndim))]


def expand_to_planes(x, shape):
return append_dims(x, len(shape)).repeat([1, 1, *shape[2:]])


def alpha_sigma_to_t(alpha, sigma):
return torch.atan2(sigma, alpha) * 2 / math.pi


def t_to_alpha_sigma(t):
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)

class ConvBlock(nn.Sequential):
def __init__(self, c_in, c_out):
super().__init__(
nn.Conv2d(c_in, c_out, 3, padding=1),
nn.ReLU(inplace=True),
)


class SkipBlock(nn.Module):
def __init__(self, main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()

def forward(self, input):
return torch.cat([self.main(input), self.skip(input)], dim=1)


class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.randn([out_features // 2, in_features]) * std)

def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)


@MODELS.register_module()
class SecondaryDiffusionImageNet2(nn.Module):
def __init__(self):
super().__init__()
self.in_channels = 3
c = 64 # The base channel count
cs = [c, c * 2, c * 2, c * 4, c * 4, c * 8]

self.timestep_embed = FourierFeatures(1, 16)
self.down = nn.AvgPool2d(2)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)

self.net = nn.Sequential(
ConvBlock(3 + 16, cs[0]),
ConvBlock(cs[0], cs[0]),
SkipBlock([
self.down,
ConvBlock(cs[0], cs[1]),
ConvBlock(cs[1], cs[1]),
SkipBlock([
self.down,
ConvBlock(cs[1], cs[2]),
ConvBlock(cs[2], cs[2]),
SkipBlock([
self.down,
ConvBlock(cs[2], cs[3]),
ConvBlock(cs[3], cs[3]),
SkipBlock([
self.down,
ConvBlock(cs[3], cs[4]),
ConvBlock(cs[4], cs[4]),
SkipBlock([
self.down,
ConvBlock(cs[4], cs[5]),
ConvBlock(cs[5], cs[5]),
ConvBlock(cs[5], cs[5]),
ConvBlock(cs[5], cs[4]),
self.up,
]),
ConvBlock(cs[4] * 2, cs[4]),
ConvBlock(cs[4], cs[3]),
self.up,
]),
ConvBlock(cs[3] * 2, cs[3]),
ConvBlock(cs[3], cs[2]),
self.up,
]),
ConvBlock(cs[2] * 2, cs[2]),
ConvBlock(cs[2], cs[1]),
self.up,
]),
ConvBlock(cs[1] * 2, cs[1]),
ConvBlock(cs[1], cs[0]),
self.up,
]),
ConvBlock(cs[0] * 2, cs[0]),
nn.Conv2d(cs[0], 3, 3, padding=1),
)

def forward(self, input, t):
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape)
v = self.net(torch.cat([input, timestep_embed], dim=1))
alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
pred = input * alphas - v * sigmas
eps = input * sigmas + v * alphas
return dict(v=v, pred=pred, eps=eps)