Skip to content

Commit

Permalink
update README
Browse files Browse the repository at this point in the history
  • Loading branch information
hukkai committed Dec 9, 2022
1 parent 918d1ac commit c7fcf5a
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions configs/recognition/timesformer/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@ We present a convolution-free approach to video classification built exclusively

| frame sampling strategy | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | testing protocol | FLOPs | params | config | ckpt | log |
| :---------------------: | :--------: | :--: | :---------------------: | :----------: | :------: | :------: | :--------------: | :---: | :----: | :----------------------------: | :--------------------------: | :-------------------------: |
| 8x32x1 | 224x224 | 8 | TimeSformer (divST) | ImageNet-21K | 77.69 | 93.45 | 1 clips x 3 crop | 196G | 122M | [config](/configs/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb_20220815-a4d0d01f.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb.log) |
| 8x32x1 | 224x224 | 8 | TimeSformer (jointST) | ImageNet-21K | 76.95 | 93.28 | 1 clips x 3 crop | 180G | 86.11M | [config](/configs/recognition/timesformer/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb_20220815-8022d1c0.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb.log) |
| 8x32x1 | 224x224 | 8 | TimeSformer (spaceOnly) | ImageNet-21K | 76.93 | 92.88 | 1 clips x 3 crop | 141G | 86.11M | [config](/configs/recognition/timesformer/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb_20220815-78f05367.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb.log) |
| 8x32x1 | 224x224 | 8 | TimeSformer (divST) | ImageNet-21K | 77.69 | 93.45 | 1 clip x 3 crop | 196G | 122M | [config](/configs/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb_20220815-a4d0d01f.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb.log) |
| 8x32x1 | 224x224 | 8 | TimeSformer (jointST) | ImageNet-21K | 76.95 | 93.28 | 1 clip x 3 crop | 180G | 86.11M | [config](/configs/recognition/timesformer/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb_20220815-8022d1c0.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb.log) |
| 8x32x1 | 224x224 | 8 | TimeSformer (spaceOnly) | ImageNet-21K | 76.93 | 92.88 | 1 clip x 3 crop | 141G | 86.11M | [config](/configs/recognition/timesformer/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb_20220815-78f05367.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/recognition/timesformer/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb/timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb.log) |

1. The **gpus** indicates the number of gpus we used to get the checkpoint. If you want to use a different number of gpus or videos per gpu, the best way is to set `--auto-scale-lr` when calling `tools/train.py`, this parameter will auto-scale the learning rate according to the actual batch size and the original batch size.
2. We keep the test setting with the [original repo](https://github.com/facebookresearch/TimeSformer) (three crop x 1 clip).
Expand Down

0 comments on commit c7fcf5a

Please sign in to comment.