Skip to content

Commit

Permalink
fix: formula
Browse files Browse the repository at this point in the history
  • Loading branch information
oosquare committed Sep 10, 2024
1 parent 1e70700 commit 225ff1d
Show file tree
Hide file tree
Showing 25 changed files with 408 additions and 230 deletions.
4 changes: 3 additions & 1 deletion .obsidian/app.json
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
{
"readableLineLength": false
"readableLineLength": false,
"newFileLocation": "folder",
"newFileFolderPath": "pages"
}
159 changes: 159 additions & 0 deletions .obsidian/plugins/obsidian-copy-block-link/main.js

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

10 changes: 10 additions & 0 deletions .obsidian/plugins/obsidian-copy-block-link/manifest.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
{
"id": "obsidian-copy-block-link",
"name": "Copy Block Link",
"version": "1.0.4",
"minAppVersion": "0.12.12",
"description": "Get links to blocks and headings from Obsidian's right click menu",
"author": "mgmeyers",
"authorUrl": "https://github.com/mgmeyers/obsidian-copy-block-link",
"isDesktopOnly": false
}
19 changes: 13 additions & 6 deletions .obsidian/workspace.json
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,12 @@
"id": "301fcd1e21a67ab9",
"type": "leaf",
"state": {
"type": "empty",
"state": {}
"type": "markdown",
"state": {
"file": "pages/数学/线性代数/矩阵.md",
"mode": "preview",
"source": true
}
}
}
]
Expand Down Expand Up @@ -61,8 +65,7 @@
"state": {}
}
}
],
"currentTab": 1
]
}
],
"direction": "horizontal",
Expand All @@ -82,6 +85,7 @@
"state": {
"type": "backlink",
"state": {
"file": "pages/数学/线性代数/矩阵.md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
Expand All @@ -98,6 +102,7 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "pages/数学/线性代数/矩阵.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
Expand All @@ -119,7 +124,9 @@
"type": "leaf",
"state": {
"type": "outline",
"state": {}
"state": {
"file": "pages/数学/线性代数/矩阵.md"
}
}
}
]
Expand All @@ -139,7 +146,7 @@
"command-palette:打开命令面板": false
}
},
"active": "cea88693cff4a209",
"active": "d7a2c43528e03711",
"lastOpenFiles": [
"pages/数学/微积分/导数.md",
"pages/数学/微积分/函数.md",
Expand Down
12 changes: 6 additions & 6 deletions pages/数学/微积分/偏导数.md
Original file line number Diff line number Diff line change
Expand Up @@ -120,19 +120,19 @@ tags:
- **方向导数**
- **定义**
- 设 $z=f(x,y)$ 在点 $P(x_0,y_0)$ 的某邻域内有定义。
- 从 $P$ 引一条方向向量为 $\bm e=(\cos\alpha,\cos\beta)$ 的射线。在射线上取 $P'(x+\Delta x,y+\Delta y)$,定义方向导数为
- 从 $P$ 引一条方向向量为 $\boldsymbol e=(\cos\alpha,\cos\beta)$ 的射线。在射线上取 $P'(x+\Delta x,y+\Delta y)$,定义方向导数为
$$
\frac{\partial z}{\partial\bm e}=\lim_{\rho\to 0}\frac{\Delta_{\bm e} z}=\lim_{\rho\to 0}\frac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\rho}\ (\rho=|PP'|=\sqrt{\Delta x^2+\Delta y^2})
\frac{\partial z}{\partial\boldsymbol e}=\lim_{\rho\to 0}\frac{\Delta_{\boldsymbol e} z}=\lim_{\rho\to 0}\frac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\rho}\ (\rho=|PP'|=\sqrt{\Delta x^2+\Delta y^2})
$$
- 方向导数与对 $x,y$ 的偏导数关系:
$$
\frac{\partial z}{\partial\bm i}=\frac{\partial z}{\partial x},\frac{\partial z}{\partial\bm j}=\frac{\partial z}{\partial y}
\frac{\partial z}{\partial\boldsymbol i}=\frac{\partial z}{\partial x},\frac{\partial z}{\partial\boldsymbol j}=\frac{\partial z}{\partial y}
$$
- **计算**
- 计算方向导数的基础方法是利用定义计算。
- 如果 $z=f(x,y)$ 在 $P(x,y)$ 可微,则在 $P(x,y)$ 的任意方向导数都存在,当方向向量为 $\bm e=(\cos\alpha,\cos\beta)$ 时,方向导数为
- 如果 $z=f(x,y)$ 在 $P(x,y)$ 可微,则在 $P(x,y)$ 的任意方向导数都存在,当方向向量为 $\boldsymbol e=(\cos\alpha,\cos\beta)$ 时,方向导数为
$$
\frac{\partial z}{\partial\bm e}=\frac{\partial z}{\partial x}\cos\alpha+\frac{\partial z}{\partial y}\cos\beta
\frac{\partial z}{\partial\boldsymbol e}=\frac{\partial z}{\partial x}\cos\alpha+\frac{\partial z}{\partial y}\cos\beta
$$
- **梯度**
- **定义**
Expand All @@ -147,7 +147,7 @@ tags:
- **性质**
- 方向导数沿梯度方向最大,即
$$
\max_{\bm e}\frac{\partial u}{\partial\bm e}=|\nabla u|=\sqrt{\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2+\left(\frac{\partial u}{\partial z}\right)^2}
\max_{\boldsymbol e}\frac{\partial u}{\partial\boldsymbol e}=|\nabla u|=\sqrt{\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2+\left(\frac{\partial u}{\partial z}\right)^2}
$$
- 沿梯度方向函数值增加最快,沿负梯度方向函数值减小最快,垂直梯度方向方向导数为零。
- 某一点的梯度与过该点的等值线 / 等值面的切线 / 切平面垂直。
Loading

0 comments on commit 225ff1d

Please sign in to comment.