Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed conversion of Batch Norm when training=true #1249

Merged
merged 1 commit into from
Dec 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions tests/test_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -2221,6 +2221,27 @@ def func(x):
return tf.identity(y, name=_TFOUTPUT)
self._run_test_case(func, [_OUTPUT], {_INPUT: x_val}, rtol=1e-04)

@check_opset_min_version(7, "batchnorm")
def test_fused_batchnorm_training(self):
x_shape = [1, 28, 28, 2]
x_dtype = np.float32
scale_dtype = np.float32
scale_shape = [2]
# only nhwc is support on cpu for tensorflow
data_format = "NHWC"
x_val = np.random.random_sample(x_shape).astype(x_dtype)
scale_val = np.random.random_sample(scale_shape).astype(scale_dtype)
offset_val = np.random.random_sample(scale_shape).astype(scale_dtype)
def func(x):
scale = tf.constant(scale_val, name='scale')
offset = tf.constant(offset_val, name='offset')
epsilon = 0.001
y, _, _ = fused_batch_norm(
x, scale, offset, mean=None, variance=None,
epsilon=epsilon, data_format=data_format, is_training=True)
return tf.identity(y, name=_TFOUTPUT)
self._run_test_case(func, [_OUTPUT], {_INPUT: x_val}, rtol=1e-04)

@check_opset_min_version(7, "batchnorm")
@check_tf_min_version("1.13")
def test_batchnorm(self):
Expand Down
33 changes: 29 additions & 4 deletions tf2onnx/onnx_opset/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -784,24 +784,49 @@ def version_6(cls, ctx, node, **kwargs):

conv_convert_inputs(ctx, node, with_kernel=False)

inp_shape = ctx.get_shape(node.input[0])
inp_rank = len(inp_shape) if inp_shape is not None else None
scale_shape = ctx.get_shape(node.input[1])
mean_shape = ctx.get_shape(node.input[3])
var_shape = ctx.get_shape(node.input[4])
val_type = utils.map_onnx_to_numpy_type(ctx.get_dtype(node.input[1]))

if node.get_attr_value('is_training', 1) == 1:
is_training = node.get_attr_value('is_training', True)

if is_training and node.get_attr_value('exponential_avg_factor', 1.0) == 1.0:
# Sometimes TF uses a BatchNorm op with training = True and exponential_avg_factor = 1.0
# to perform layer mean/variance normalization. In such cases, the mean/var are computed from the input.
# TF allows mean/variance to be excluded only if is_training and exponential_avg_factor == 1.0
utils.make_sure(inp_rank is not None, "Cannot convert node %s of type %s with input of unknown rank.",
node.name, tf_type)
dims = [0] + list(range(2, inp_rank))
avg = ctx.make_node("ReduceMean", [node.input[0]], attr={'axes': dims, 'keepdims': True}).output[0]
avg_squeezed = GraphBuilder(ctx).make_squeeze({"data": avg, "axes": dims})
sub = ctx.make_node("Sub", [node.input[0], avg]).output[0]
var_squeezed = ctx.make_node("ReduceSumSquare", [sub], attr={'axes': dims, 'keepdims': False}).output[0]

inp_shape = ctx.make_node("Shape", [node.input[0]]).output[0]
dims_const = ctx.make_const(utils.make_name("axes_const"), np.array(dims, dtype=np.int64)).output[0]
reduce_dims = ctx.make_node("Gather", [inp_shape, dims_const]).output[0]
dims_product = ctx.make_node("ReduceProd", [reduce_dims], attr={'axes': [0], 'keepdims': False})
cnt_float = ctx.make_node("Cast", [dims_product.output[0]], attr={'to': ctx.get_dtype(node.input[0])})

pop_var_squeezed = ctx.make_node("Div", [var_squeezed, cnt_float.output[0]]).output[0]
ctx.replace_inputs(node, node.input[:3] + [avg_squeezed, pop_var_squeezed])
else:
logger.warning("Node %s of type %s has is_training set to true, which is not supperted. "
"Please re-save the model with training set to false.",
node.name, tf_type)
# As long as the mean/variance estimates are provided, we should be OK
is_training = False

if mean_shape != scale_shape and all(d >= 0 for d in scale_shape):
if not is_training and mean_shape != scale_shape and all(d >= 0 for d in scale_shape):
new_mean_value = np.array(np.resize(node.inputs[3].get_tensor_value(as_list=False), scale_shape),
dtype=val_type)
new_mean_node_name = utils.make_name(node.name)
ctx.make_const(new_mean_node_name, new_mean_value)
ctx.replace_input(node, node.input[3], new_mean_node_name, 3)

if var_shape != scale_shape and all(d >= 0 for d in scale_shape):
if not is_training and var_shape != scale_shape and all(d >= 0 for d in scale_shape):
new_var_value = np.array(np.resize(node.inputs[4].get_tensor_value(as_list=False), scale_shape),
dtype=val_type)
new_val_node_name = utils.make_name(node.name)
Expand Down