An R package that selects variables from high-dimensional continuous data to make vine copula based (quantile) univariate predictions.
It depends on vinereg and kde1d.
You can install the development version from GitHub with:
# install.packages("remotes")
remotes::install_github("oezgesahin/sparsevinereg")
Below is an overview of some functions and features.
library(sparsevinereg)
set.seed(11)
x <- matrix(rnorm(5000), 500, 10)
y <- x[,1] -2*x[,2] + 3*x[,3] + 5*x[,4] - 4*x[,5]
# response is in the first column of the data
data <- data.frame(y = y, x = x)
fit <- sparsevinereg(data)
fit_ParCor <- sparsevinereg(data, varsel='ParCor')
print(fit)
#> method = resid vine = Dvine vars_indx = 4 5 3 2 1
upper_pred <- predict(fit, data, 0.90)
mean_pred <- predict(fit, data, NA)
Please contact ozgesahin-94@hotmail.com if you have any questions.
Sahin, O., and Czado, C. (2022). High-dimensional sparse vine copula regression with application to genomic prediction. arXiv preprint arXiv:2208.12383. preprint.