Code repository for our paper Maximally Expressive GNNs for Outerplanar Graphs (LoG Extended Abstract, 2023).
Clone this repository and open the directory
Add this directory to the python path. Let $PATH
be the path to where this repository is stored (i.e. the result of running pwd
).
export PYTHONPATH=$PYTHONPATH:$PATH
Create a conda environment (this assume miniconda is installed)
conda create --name GNNs
Activate environment
conda activate GNNs
Install dependencies
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 -c pytorch
conda install -c pyg pyg=2.2.0
pip install -r requirements.txt
Results can be found in the results directory.
Baselines (GIN):
python Exp/run_experiment.py -grid Configs/Eval/GIN_zinc.yaml -dataset ZINC --candidates 48 --repeats 10
python Exp/run_experiment.py -grid Configs/Eval/GIN_molhiv.yaml -dataset ogbg-molhiv --candidates 16 --repeats 10
New models (CAT+GIN):
python Exp/run_experiment.py -grid Configs/Eval/cat_molhiv.yaml -dataset ogbg-molhiv --candidates 16 --repeats 10
python Exp/run_experiment.py -grid Configs/Eval/cat_zinc.yaml -dataset ZINC --candidates 48 --repeats 10