The DataProfiler is a Python library designed to make data analysis, monitoring and sensitive data detection easy.
Loading Data with a single command, the library automatically formats & loads files into a DataFrame. Profiling the Data, the library identifies the schema, statistics, entities (PII / NPI) and more. Data Profiles can then be used in downstream applications or reports.
Getting started only takes a few lines of code (example csv):
import json
from dataprofiler import Data, Profiler
data = Data("your_file.csv") # Auto-Detect & Load: CSV, AVRO, Parquet, JSON, Text
print(data.data.head(5)) # Access data directly via a compatible Pandas DataFrame
profile = Profiler(data) # Calculate Statistics, Entity Recognition, etc
readable_report = profile.report(report_options={"output_format":"compact"})
print(json.dumps(readable_report, indent=4))
Note: The Data Profiler comes with a pre-trained deep learning model, used to efficiently identify sensitive data (PII / NPI). If desired, it's easy to add new entities to the existing pre-trained model or insert an entire new pipeline for entity recognition.
For API documentation, visit the documentation page.
If you have suggestions or find a bug, please open an issue.
To install the full package from pypi: pip install DataProfiler[ml]
If the ML requirements are too strict (say, you don't want to install tensorflow), you can install a slimmer package. The slimmer package disables the default sensitive data detection / entity recognition (labler)
Install from pypi: pip install DataProfiler
In the case of this library, a data profile is a dictionary containing statistics and predictions about the underlying dataset. There are "global statistics" or global_stats
, which contain dataset level data and there are "column/row level statistics" or data_stats
(each column is a new key-value entry).
The format for a profile is below:
"global_stats": {
"samples_used": int,
"column_count": int,
"row_count": int,
"row_has_null_ratio": float,
"row_is_null_ratio": float,
"unique_row_ratio": float,
"duplicate_row_count": int,
"file_type": string,
"encoding": string,
},
"data_stats": {
<column name>: {
"column_name": string,
"data_type": string,
"data_label": string,
"categorical": bool,
"order": string,
"samples": list(str),
"statistics": {
"sample_size": int,
"null_count": int,
"null_types": list(string),
"null_types_index": {
string: list(int)
},
"data_type_representation": [string, list(string)],
"min": [null, float],
"max": [null, float],
"mean": float,
"variance": float,
"stddev": float,
"histogram": {
"bin_counts": list(int),
"bin_edges": list(float),
},
"quantiles": {
int: float
}
"vocab": list(char),
"avg_predictions": dict(float),
"data_label_representation": dict(float),
"categories": list(str),
"unique_count": int,
"unique_ratio": float,
"precision": {
'min': int,
'max': int,
'mean': float,
'var': float,
'std': float,
'sample_size': int,
'margin_of_error': float,
'confidence_level': float
},
"times": dict(float),
"format": string
}
}
}
- Any delimited file (CSV, TSV, etc.)
- JSON object
- Avro file
- Parquet file
- Pandas DataFrame
Data Types are determined at the column level for structured data
- Int
- Float
- String
- DateTime
Data Labels are determined per cell for structured data (column/row when the profiler is used) or at the character level for unstructured data.
- UNKNOWN
- ADDRESS
- BAN (bank account number, 10-18 digits)
- CREDIT_CARD
- EMAIL_ADDRESS
- UUID
- HASH_OR_KEY (md5, sha1, sha256, random hash, etc.)
- IPV4
- IPV6
- MAC_ADDRESS
- PERSON
- PHONE_NUMBER
- SSN
- URL
- US_STATE
- DRIVERS_LICENSE
- DATE
- TIME
- DATETIME
- INTEGER
- FLOAT
- QUANTITY
- ORDINAL
The Data Profiler can profile the following data/file types:
- CSV file (or any delimited file)
- JSON object
- Avro file
- Parquet file
- Pandas DataFrame
The profiler should automatically identify the file type and load the data into a Data Class
.
Along with other attributtes the Data class
enables data to be accessed via a valid Pandas DataFrame.
# Load a csv file, return a CSVData object
csv_data = Data('your_file.csv')
# Print the first 10 rows of the csv file
print(csv_data.data.head(10))
# Load a parquet file, return a ParquetData object
parquet_data = Data('your_file.parquet')
# Sort the data by the name column
parquet_data.data.sort_values(by='name', inplace=True)
# Print the sorted first 10 rows of the parquet data
print(parquet_data.data.head(10))
If the file type is not automatically identified (rare), you can specify them specifically, see section Specifying a Filetype or Delimiter.
Example uses a CSV file for example, but CSV, JSON, Avro or Parquet should also work.
import json
from dataprofiler import Data, Profiler
# Load file (CSV should be automatically identified)
data = Data("your_file.csv")
# Profile the dataset
profile = Profiler(data)
# Generate a report and use json to prettify.
report = profile.report(report_options={"output_format":"pretty"})
# Print the report
print(json.dumps(report, indent=4))
Currently, the data profiler is equipped to update its profile in batches.
import json
from dataprofiler import Data, Profiler
# Load and profile a CSV file
data = Data("your_file.csv")
profile = Profiler(data)
# Update the profile with new data:
new_data = Data("new_data.csv")
profile.update_profile(new_data)
# Print the report using json to prettify.
report = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))
Note that if the data you update the profile with contains integer indices that overlap with the indices on data originally profiled, when null rows are calculated the indices will be "shifted" to uninhabited values so that null counts and ratios are still accurate.
If you have two files with the same schema (but different data), it is possible to merge the two profiles together via an addition operator.
This also enables profiles to be determined in a distributed manner.
import json
from dataprofiler import Data, Profiler
# Load a CSV file with a schema
data1 = Data("file_a.csv")
profile1 = Profiler(data)
# Load another CSV file with the same schema
data2 = Data("file_b.csv")
profile2 = Profiler(data)
profile3 = profile1 + profile2
# Print the report using json to prettify.
report = profile3.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))
Note that if merged profiles had overlapping integer indices, when null rows are calculated the indices will be "shifted" to uninhabited values so that null counts and ratios are still accurate.
import pandas as pd
import dataprofiler as dp
import json
my_dataframe = pd.DataFrame([[1, 2.0],[1, 2.2],[-1, 3]])
profile = dp.Profiler(my_dataframe)
# print the report using json to prettify.
report = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))
# read a specified column, in this case it is labeled 0:
print(json.dumps(report["data stats"][0], indent=4))
Visit the documentation page for additional Examples and API details
Sensitive Data Detection with High-Throughput Neural Network Models for Financial Institutions
Authors: Anh Truong, Austin Walters, Jeremy Goodsitt
2020 https://arxiv.org/abs/2012.09597
The AAAI-21 Workshop on Knowledge Discovery from Unstructured Data in Financial Services