To install the Python dependencies, create a tabula-muris-env
environment by using the environment.yml
file provided:
conda env create -f environment.yml
Activate the environment and install it to your Jupyter notebook with:
source activate tabula-muris-env
python -m ipykernel install --user --name tabula-muris-env --display-name "Python 3.6 (tabula-muris-env)"
If you want to start from the raw gene-cell counts tables, then first download the data from figshare. You can download manually from the links (FACS and Droplet) or run a script we've prepared:
bash 00_data_ingest/download_data.sh
This will download two zip files,droplet_raw_data.zip
and facs_raw_data.zip
and unzip them into the folder structure described below. Then you'll have two folders in 00_data_ingest
(the location is important - everything here depends on the folder structure).
The FACS folder should look like this:
00_facs_raw_data/
├── FACS
│ ├── Bladder-counts.csv
│ ├── Brain_Microglia-counts.csv
│ ├── Brain_Neurons-counts.csv
│ ├── Colon-counts.csv
│ ├── Fat-counts.csv
│ ├── Heart-counts.csv
│ ├── Kidney-counts.csv
│ ├── Liver-counts.csv
│ ├── Lung-counts.csv
│ ├── Mammary-counts.csv
│ ├── Marrow-counts.csv
│ ├── Muscle-counts.csv
│ ├── Pancreas-counts.csv
│ ├── Skin-counts.csv
│ ├── Spleen-counts.csv
│ ├── Thymus-counts.csv
│ ├── Tongue-counts.csv
│ └── Trachea-counts.csv
├── FACS.zip
├── annotations_FACS.csv
└── metadata_FACS.csv
Now your droplet folders should look like this:
01_droplet_raw_data
├── annotations_droplets.csv
├── droplet
│ ├── Bladder-10X_P4_3
│ ├── Bladder-10X_P4_4
│ ├── Bladder-10X_P7_7
│ ├── Heart-10X_P7_4
│ ├── Kidney-10X_P4_5
│ ├── Kidney-10X_P4_6
│ ├── Kidney-10X_P7_5
│ ├── Liver-10X_P4_2
│ ├── Liver-10X_P7_0
│ ├── Liver-10X_P7_1
│ ├── Lung-10X_P7_8
│ ├── Lung-10X_P7_9
│ ├── Lung-10X_P8_12
│ ├── Lung-10X_P8_13
│ ├── Mammary-10X_P7_12
│ ├── Mammary-10X_P7_13
│ ├── Marrow-10X_P7_2
│ ├── Marrow-10X_P7_3
│ ├── Muscle-10X_P7_14
│ ├── Muscle-10X_P7_15
│ ├── Spleen-10X_P4_7
│ ├── Spleen-10X_P7_6
│ ├── Thymus-10X_P7_11
│ ├── Tongue-10X_P4_0
│ ├── Tongue-10X_P4_1
│ ├── Tongue-10X_P7_10
│ ├── Trachea-10X_P8_14
│ └── Trachea-10X_P8_15
├── droplet.zip
└── metadata_droplet.csv
All of the *-10X_*
folders contain a barcodes.tsv
, genes.tsv
, and matrix.mtx
file as output by cellranger from 10X genomics.
01_droplet_raw_data/droplet/Bladder-10X_P4_3
├── barcodes.tsv
├── genes.tsv
└── matrix.mtx
- FACS = SmartSeq2 on FACS-sorted plates
- Microfluidic = 10x droplet-based unique molecular identifier (UMI)-barcoded transcripts and cells
tabula_muris/
00_data_ingest/ # How the data was processed from gene-cell tables
README.md
download_robj.Rmd # Download R objects for figures using this script
02_tissue_analysis_rmd/ # *Generate* R objects for figures yourself
Aorta_facs.Rmd
Brain-Non-microglia_facs.Rmd
Brain-Microglia_facs.Rmd
Bladder_facs.Rmd
Bladder_droplet.Rmd
Colon_facs.Rmd
Heart_facs.Rmd
Heart_droplet.Rmd
... more files ...
03_tissue_annotation_csv/
Aorta_facs_annotation.csv
Brain-Non-microglia_facs_annotation.csv
Brain-Microglia_facs_annotation.csv
Bladder_facs_annotation.csv
Bladder_droplet_annotation.csv
Colon_facs_annotation.csv
Heart_facs_annotation.csv
Heart_droplet_annotation.csv
... more files ...
04_tissue_robj_generated/
10_tissue_robj_downloaded/
11_global_robj/
12_extract_number_of_genes_cells/
13_ngenes_ncells_facs/
14_ngenes_ncells_droplet/
15_color_palette/
16_genes_for_tissue_tsne/
20_dissociation_genes/
All_Droplet_Notebook.Rmd
All_FACS_Notebook.Rmd
Droplet_Notebook.Rmd
FACS_Notebook.Rmd
README.md
cell_order_FACS.txt
cell_order_droplets.txt
download_data.sh
01_figure1/ # Overview + #cell barplots + #gene/#reads horizonplots
README.md
figure1{b-g}.ipynb
02_figure2/ # FACS TSNE plots + annotation barplots
README.md
figure2a.Rmd
figure2b.Rmd
figure2c.ipynb
03_figure3/ # All-cell clustering heatmap with dendrogram
figure3.Rmd
04_figure4/ # Analysis of all T cells sorted by FACS
figure4{a-d}.Rmd
05_figure5/ # Transcription factor expression analysis
figure5.Rmd
11_supplementary_figure1/ # Histograms of number of genes detected across tissues
12_supplementary_figure2/ # FACS vs Microfluidics - # cells expressing a gene
13_supplementary_figure3/ # FACS vs Microfluidics - # genes detected per cell
14_supplementary_figure4/ # FACS vs Microfluidics - dynamic range
15_supplementary_figure5/ # Microfluidics TSNE plots + annotation barplots
16_supplementary_figure6/ # Analysis of dissociation-induced genes
17_supplementary_figure7/ # Transcription factor enrichment in cell types
FACS + SmartSeq2 | Microfluidic droplets (10x) | |
---|---|---|
Aorta | Yes | No |
Bladder | Yes | Yes |
Brain_Microglia | Yes | No |
Brain_Non-microglia | Yes | No |
Colon | Yes | No |
Diaphragm | Yes | No |
Fat | Yes | No |
Heart | Yes | Yes |
Kidney | Yes | Missing |
Liver | Yes | Yes |
Lung | Yes | Yes |
Mammary | Yes | Yes |
Marrow | Yes | Yes |
Muscle | Yes | Yes |
Pancreas | Yes | No |
Skin | Yes | No |
Spleen | Yes | Missing |
Thymus | Yes | Yes |
Tongue | Yes | Yes |
Trachea | Yes | Yes |