Skip to content

g2-MLP: State-of-the-Art Model for Node Classification on Graphs (PPI Dataset)

License

Notifications You must be signed in to change notification settings

nnaakkaaii/g2-MLP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

g2-MLP

PWC

This is an implementation of g2-MLP.

paper details

A Proposal of Multi-Layer Perceptron with Graph Gating Unit for Graph Representation Learning and its Application to Surrogate Model for FEM

GNNs are the neural networks for the representation learning of graph-structured data, most of which are constructed by stacking graph convolutional layers. As stacking n-layers of ones is equivalent to propagating n-hop of neighbor nodes' information, GNNs require enough large number of layers to learn large graphs. However, it tends to degrade the model performance due to the problem called over-smoothing. In this paper, by presenting a novel GNN model, based on stacking feedforward neural networks with gating structures using GCNs, I tried to solve the over-smoothing problem and thereby overcome the difficulty of GNNs learning large graphs. The experimental results showed that the proposed method monotonically improved the prediction accuracy up to 20 layers without over-smoothing, whereas the conventional method caused it at 4 to 8 layers. In two experiments on large graphs, the PPI dataset, a benchmark for inductive node classification, and the application to the surrogate model for finite element methods, the proposed method achieved the highest accuracy of the existing methods compared, especially with a state-of-the-art accuracy of 99.71% on the PPI dataset.

Results

PPI (iductive node classification)

Model micro-F1
GAT 94.17% (±2.20)
GCN 80.74% (±0.69)
MLP (20 layers, pb 0.8, 1500 epochs) 83.126% (±0.036)
g2-MLP (4 layers, pb 0.8, 1500 epochs) 99.531% (±0.018)
g2-MLP (8 layers, pb 0.8, 1500 epochs) 99.663% (±0.009)
g2-MLP (12 layers, pb 0.8, 1500 epochs) 99.689% (±0.007)
g2-MLP (16 layers, pb 0.8, 1500 epochs) 99.699% (±0.013)
g2-MLP (20 layers, pb 0.8, 1500 epochs) 99.705% (±0.014)
g2-MLP (24 layers, pb 0.8, 1500 epochs) 99.700% (±0.006)
g2-MLP (20 layers, pb 0.6, 1500 epochs) 99.690% (±0.013)
g2-MLP (20 layers, pb 1.0, 1500 epochs) 99.598% (±0.012)
hyper parameters
parameters value
batch size 64
lr 2.5e-3
beta (0.9, 0.9)
lr_decay_gamma 0.3
lr_decay_iters 300
fnn hidden dim 2048
hidden dim 128

FEM (inductive node classification)

Model micro-F1 details
GAT (4 layers, 512 hidden_dim, 100 epochs) 39.56% (±0.04) 39.55
39.53
39.63
39.55
39.52
GCN (4 layers, 512 hidden_dim, 100 epochs) 40.60% (±0.17) 40.69
40.72
40.70
40.27
40.62
MLP (12 layers, pb 0.8, 1500 epochs) 43.42% (±0.30) 43.73
42.96
43.69
43.53
43.19
g2-MLP (12 layers, pb 0.8, 1500 epochs) 70.49% (±0.75) 69.68
71.04
71.68
69.88
70.18
hyper parameters
parameters value
batch size 512
lr 2.5e-3
beta (0.9, 0.9)
lr_decay_gamma 0.3
lr_decay_iters 300
fnn hidden dim 2048
hidden dim 128
About FEM dataset

The fillet structure like the follows

fillet

We prepared 229 datasets in the following conditions.

TODO : translate

  • 各長方形の高さをそれぞれ 10 ~ 100 (10刻み) でランダムに変更
  • フィレット径を 5 ~ 45 (5刻み) でランダムに変更

このうち、8割をtrain, 1割をvalidation, 1割をtestとした

./docs/FEMMeshNetgen.frd にあるようなCalculixの計算結果をパースした.

特徴量には次のDisp. を利用している. (TODO : dispとは?)

 -4  DISP        4    1
 -5  D1          1    2    1    0
 -5  D2          1    2    2    0
 -5  D3          1    2    3    0
 -5  ALL         1    2    0    0    1ALL
 -1         1-1.23851E-03 1.38397E-03 8.13754E-06
 -1         2-1.23833E-03 1.38748E-03 1.65606E-05
 -1         3-1.23595E-03 1.86246E-03 1.33735E-05
 ...

また、次のノードの座標も取得し、正規化した上で特徴量として取り入れている.

    2C                          1242                                     1
 -1         1 2.30000E+01 2.00000E+01 5.00000E+00
 -1         2 2.30000E+01 2.00000E+01 0.00000E+00
 -1         3 3.00000E+01 2.00000E+01 5.00000E+00
 -1         4 3.00000E+01 2.00000E+01 0.00000E+00
 -1         5 3.00000E+01 0.00000E+00 5.00000E+00

予測対象は次の応力Stress. を、応力の大きさ ( $\sqrt(SXX^2 + SYY^2 + SZZ^2)$ ) にしたものを利用している.

また、予測は数値を直接予測するのではなく、 $2^n$ でbinningし (今回は $2^0$ から $2^4$ )、クラス分類のタスクとした.

(ex : [0.1, 7, 3, 18, 2] -> [0, 3, 2, 5, 1])

 -4  STRESS      6    1
 -5  SXX         1    4    1    1
 -5  SYY         1    4    2    2
 -5  SZZ         1    4    3    3
 -5  SXY         1    4    1    2
 -5  SYZ         1    4    2    3
 -5  SZX         1    4    3    1
 -1         1 3.68768E-01 8.27878E-03-2.20199E-02-1.50879E-01 2.03513E-03 3.27718E-02
 -1         2 3.52119E-01 1.33049E-02-2.21362E-02-1.71304E-01 8.95834E-03-4.10380E-02
 -1         3 3.28198E-03-6.22315E-03 1.52381E-03-3.40027E-03-1.19905E-03-2.91369E-04
 -1         4-3.29518E-03-8.83664E-03 1.10334E-03 3.01675E-03 7.87600E-04 5.29066E-04

ノード間の結合は、次のような正四面体要素であることを踏まえて、正四面体構成ノードのrawデータからパースした

tetrahedron

    3C                           605                                     1
 -1       483    6    0    1
 -2        23       142        24        52       810       811       228       793       525       797
 -1       484    6    0    1
 -2       142        80        24        52       812       785       811       525       795       797
 -1       485    6    0    1
 -2       119       128       180       181       469       813       815       816       814       659

NCI1 (inductive graph classification)

Model Accuracy details
SAGPool 74.18%
GIN-0 82.7%
PSCN 78.59%
GK 62.28
g2-MLP (4 layers, pb 1.0, 100 epochs) 82.38% (±0.76) 82.48
83.21
83.21
81.51
81.51
ハイパラ詳細
parameters value
batch size 256
lr 2.5e-3
beta (0.9, 0.9)
fnn hidden dim 512
hidden dim 32

PTC_MR (inductive graph classification)

Model Accuracy details
U2GNN 69.93%
GAT 66.70%
GIN-0 64.6%
PSCN 62.29%
GK 57.26%
g2-MLP (4 layers, 50 epochs) 68.00% (±2.14) 71.43
68.57
65.71
68.57
65.71
ハイパラ詳細
parameters value
batch size 2048
lr 1.18e-4
beta (0.9, 0.9)
fnn hidden dim 1024
hidden dim 128

PROTEINS (inductive graph classification)

Model Accuracy details
U2GNN 78.53%
SAGPool 71.86%
GCN 75.65%
GAT 74.70%
GIN-0 76.2%
PSCN 75.89%
GK 71.67%
g2-MLP 74.11% (±1.41)

Dataset

Dataset PPI NCI1 PTC_MR PROTEINS
Graphs 24 4110 344 1113
Average Nodes Per Graph 2373 29.87 14.29 39.06
Average Edges Per Graph 34113 32.30 14.69 72.82
Features of Nodes 50
Classes 121 (multilabel) 2 2 2

Model

Graph Attention Networks (GAT; 2017)

Reference : Graph Attention Networks

Graph Convolution Networks (GCN; 2016)

Reference : Semi-Supervised Classification with Graph Convolutional Networks

Preparation

  1. install dependent packages

    $ pip3 install torch==1.9.1
    $ pip3 install -r requirements.txt
  2. download necessary data

    $ make

Usage

train

$ ./scripts/ppi_gat.sh

view tuning result on optuna-dashboard

$ optuna-dashboard sqlite:///db.sqlite3

Troubleshooting

`libcudart.so.9.0: cannot open shared object file: No such file or directory`
`libtorch_cuda_cpp.so: cannot open shared object file: No such file or directory`
  • pytorchのバージョンがあっていない
  • torch==1.9.1をインストール後、案内に従って残りのライブラリをインストール
$ python -c "import torch; print(torch.__version__)"
1.9.1
$ python -c "import torch; print(torch.version.cuda)"
cu10.2
$ export TORCH=1.9.1
$ export CUDA=cu102
$ pip install torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
$ pip install torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
$ pip install torch-geometric

References

Author

Yu, Nakai. The University of Tokyo.

Contact : nakai-yu623@g.ecc.u-tokyo.ac.jp