Detect TE insertion polymorphisms from long reads using CIGAR
minimap2 -t 8 --cs -cx map-ont reference.fa reads.fasta/fastq > output.paf
python cigar_sv_fasta.py -i output.paf -r reference.fa -l reads.fasta/fastq ```
usage: python cigar_sv.py -i <input.paf> -r <reference.fa> -l <reads.fastq/fasta> (option)
A tool to detect large structural variants (SVs) using long read sequencing
optional arguments:
-h, --help show this help message and exit
-i <input.paf> read alignment paf file with --cs -cx tag
-r <reference.fa> reference genome fasta (uncompressed or bgzipped)
-l <reads.fastq/fasta>
query long read fastq/fasta file (uncompressed or bgzipped)
-o PATH output directory [./CIGAR_output]
filter options:
-m INT minimum length of a structural variant for detection [50]
-ma INT minimum length of the alignment block
-mq INT minimum length of the query read
Col | Type | Description |
---|---|---|
1 | string | query sequence name |
2 | int | query length |
2 | int | query start |
3 | int | query end |
4 | int | direction |
5 | string | reference sequence name |
6 | int | reference length |
7 | int | sv start position on reference |
8 | int | sv end position on reference |
9 | int | sv type (insertion or deletion) (ins/del) |
10 | int | mapping quality |
11 | string | primary alignment |
12 | int | blast identity |
13 | string | corresponding sv fasta sequence |
CIGAR_SV
Copyright © 2021 Panpan Zhang (njaupanpan@gmail.com)
Any question, concern, or bug report about the program should be posted as an Issue on GitHub. Before posting, please check previous issues (both Open and Closed) to see if your issue has been addressed already. Also, please follow these good GitHub practices.