Skip to content

neuromorphicsystems/event_stream

Repository files navigation

Event Stream

This repository contains an Event Stream Python reader implemented in C++, as well as Matlab bindings.

  1. Python
  2. Matlab

Python

pip3 install event_stream

Documentation

The event_stream library provides three classes: Decoder, IndexedDecoder and Encoder:

  • Decoder reads constant-size byte buffers from an Event Stream file and returns variable-size event buffers
  • IndexedDecoder reads the entire file when created (without storing events in memory) to build an index, and can be used to fetch events at arbitrary timestamps
  • UdpDecoder reads event-stream encoded UDP packets (each packet must start with a uint64 little-endian absolute timestamp then contain an ES compliant stream)
  • Encoder writes event buffers to a file

Use Decoder if you want to process every event without delay. Use IndexedDecoder if you need to move back and forth while reading the file, for example if your are writing a file player with a clickable timeline.

The first argument to Decoder, IndexedDecoder and Encoder is a file name. It must be a path-like object. IndexedDecoder takes a second argument, the keyframe duration in µs. Encoder takes three other arguments, the evvent type and the sensor's width and height.

All three classes are contexts managers compatible with the with operator.

The detailed documentation for each class consists in a commented example (see below). There are more examples in the examples directory. Run examples/download.py first to download the media files used by the example scripts (12.8 MB).

Decoder

import event_stream

# Decoder's only argument is an Event Stream file path
# decoder is an iterator with 3 additional properties: type, width and height
#     type is one of 'generic', 'dvs', 'atis' and 'color'
#     if type is 'generic', both width and height are None
#     otherwise, width and height represent the sensor size in pixels
decoder = event_stream.Decoder('/path/to/file.es')
if decoder.type == 'generic':
    print('generic events')
else:
    print(f'{decoder.type} events, {decoder.width} x {decoder.height} sensor')

# chunk is a numpy array whose dtype depends on the decoder type:
#     generic: [('t', '<u8'), ('bytes', 'object')]
#     dvs: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), (('on', 'p'), '?')]
#     atis: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), (('exposure', 'e'), '?'), (('polarity', 'p'), '?')]
#     color: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('r', '?'), ('g', '?'), ('b', '?')]
# chunk always contains at least one event
for chunk in decoder:
    print('{} events, ts = [{} µs, {} µs]'.format(len(chunk), chunk['t'][0], chunk['t'][-1]))

IndexedDecoder

import event_stream

# IndexedDecoder's first argument is an Event Stream file path
#     its second argument is the duration of each keyframe in µs
#     the first keyframe starts with the first event
#     all the keyframes are offset accordingly
# decoder is an object with 3 properties: type, width and height
#     type is one of 'generic', 'dvs', 'atis' and 'color'
#     if type is 'generic', both width and height are None
#     otherwise, width and height represent the sensor size in pixels
# decoder has two methods: keyframes and chunk
decoder = event_stream.IndexedDecoder('/path/to/file.es', 40000)
if decoder.type == 'generic':
    print('generic events')
else:
    print(f'{decoder.type} events, {decoder.width} x {decoder.height} sensor')

# number of generated keyframes (one every 40000 µs here)
keyframes = decoder.keyframes()

for keyframe_index in range(0, keyframes):
    # keyframe_index must be in the range [0, keyframes[
    # the returned events have timestamps in the range
    #     [keyframe_index * T, (keyframe_index + 1) * T[
    #     where T is the second argument passed to IndexedDecoder
    # chunk is a numpy array whose dtype depends on the decoder type:
    #     generic: [('t', '<u8'), ('bytes', 'object')]
    #     dvs: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), (('on', 'p'), '?')]
    #     atis: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), (('exposure', 'e'), '?'), (('polarity', 'p'), '?')]
    #     color: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('r', '?'), ('g', '?'), ('b', '?')]
    # chunk may be empty
    chunk = decoder.chunk(keyframe_index)
    if len(chunk) > 0:
        print('{} / {}, {} events, ts = [{} µs, {} µs]'.format(
            keyframe_index + 1,
            keyframes,
            len(chunk),
            chunk['t'][0],
            chunk['t'][-1]))
    else:
        print('{} / {}, 0 events'.format(keyframe_index + 1, keyframes))

UdpDecoder

import event_stream

# UdpDecoder's only argument is the port to which to bind
# decoder is an iterator with 3 additional properties: type, width and height
#     type is one of 'generic', 'dvs', 'atis' and 'color'
#     if type is 'generic', both width and height are None
#     otherwise, width and height represent the sensor size in pixels
# The additional properties are updated everytime a packet is received
decoder = event_stream.UdpDecoder(12345)

# chunk is a numpy array whose dtype depends on the packet type:
#     generic: [('t', '<u8'), ('bytes', 'object')]
#     dvs: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('on', '?')]
#     atis: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('exposure', '?'), ('polarity', '?')]
#     color: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('r', '?'), ('g', '?'), ('b', '?')]

for chunk in decoder:
    print('{} events, ts = [{} µs, {} µs]'.format(len(chunk), chunk['t'][0], chunk['t'][-1]))

Encoder

# Encoder's first argument is an Event Stream file path
#     its second argument is the event type, one of 'generic', 'dvs', 'atis' and 'color'
#     its third and fourth arguments are the sensor's width and height in pixels
#     The width and height are ignored if type is 'generic'
encoder = event_stream.Encoder('/path/to/file.es', 'dvs', 1280, 720)

# write adds an event buffer to the file
# the events must be sorted in order of increasing timestamp
# the chunk passed to write must be a structured numpy array whose dtype depends on the event type:
#     generic: [('t', '<u8'), ('bytes', 'object')]
#     dvs: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('on', '?')]
#     atis: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('exposure', '?'), ('polarity', '?')]
#     color: [('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('r', '?'), ('g', '?'), ('b', '?')]
first_chunk = numpy.array([
    (0, 50, 100, True),
    (100, 1203, 641, False),
    (200, 73, 288, False),
    (300, 901, 99, True),
], dtype=[('t', '<u8'), ('x', '<u2'), ('y', '<u2'), ('on', '?')])
encoder.write(first_chunk)

# for convenience, event_stream provides dtype constants:
#     generic_dtype, dvs_dtype, atis_dtype and color_dtype
second_chunk = numpy.array([
    (400, 50, 100, True),
    (400, 1203, 641, False),
    (401, 73, 288, False),
    (401, 901, 99, True),
], dtype=event_stream.dvs_dtype)
encoder.write(second_chunk)

Matlab

Setup

After downloading this repository (zip file), run the following commands in Matlab:

cd /path/to/event_stream
cd matlab
mex event_stream_decode.cpp
mex event_stream_encode.cpp
mex event_stream_udp.cpp

The generated files (extension .mexa64, .mexmaci64 or .mexw64 depending on your operating system) can be placed in any directory. They contain the functions event_stream_decode, event_stream_encode and event_stream_udp. You can remove the rest of the repositrory from your machine if you want.

Documentation

event_stream_decode

event_stream_decode reads events from a file.

[header, events] = event_stream_decode('/path/to/file.es');
header =

  struct with fields:

      type: 'dvs'
     width: 320
    height: 240

events =

  struct with fields:

     t: [473225×1 uint64]
     x: [473225×1 uint16]
     y: [473225×1 uint16]
    on: [473225×1 logical]

header is a struct with at least one field, type. header.type is either 'generic', 'dvs', 'atis' or 'color'. Unless header.type is 'generic', header has two extra fields, width and height. They encode the sensor size in pixels.

events is a struct whose fields are numerical arrays of equal length. Each array encodes one property of the events in the file (for example the timestamp t). The number of fields and their names depend on header.type:

  • 'generic':
    • t: [n×1 uint64]
    • bytes: [n×1 string]
  • 'dvs':
    • t: [n×1 uint64]
    • x: [nx1 uint16]
    • y: [nx1 uint16]
    • on: [nx1 logical]
  • 'atis':
    • t: [n×1 uint64]
    • x: [nx1 uint16]
    • y: [nx1 uint16]
    • exposure: [nx1 logical]
    • polarity: [nx1 logical]
  • 'color':
    • t: [n×1 uint64]
    • x: [nx1 uint16]
    • y: [nx1 uint16]
    • r: [nx1 uint8]
    • g: [nx1 uint8]
    • b: [nx1 uint8]

event_stream_encode

event_stream_encode writes events to a file. The fields names and types must match those returned by event_stream_decode.

header = struct(...
    'type', 'dvs',...
    'width', uint16(320),...
    'height', uint16(240))

events = struct(...
    't', uint64([100; 200; 300]),...
    'x', uint16([303; 4; 42]),...
    'y', uint16([105; 201; 6]),...
    'on', logical([true; true; false]))

event_stream_encode('/path/to/file.es', header, events);

event_stream_udp

udp_receiver = udpport(
    "datagram",
    "IPV4",
    "LocalPort", 12345,
    "EnablePortSharing", true,
    "Timeout", 3600
);
while true
    packet = read(udp_receiver, 1, "uint8");
    [header, events] = event_stream_udp(packet.Data)
end

header and events have the same structure as the data returned by event_stream_decode.

Contribute

To format the code, run:

clang-format -i sepia.hpp python/*.cpp matlab/*.cpp

Publish

  1. Bump the version number in setup.py.

  2. Create a new release on GitHub.