Restore image using NAFNet model with streamlit dashboard
- Clone this Repo
git clone https://github.com/naseemap47/ImageRestoration-Streamlit.git
cd ImageRestoration-Streamlit
- Install Libraries
With pip
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
pip install --upgrade --no-cache-dir gdown
python3 setup.py develop --no_cuda_ext
pip install streamlit
With conda (Recommended)
conda create -n app python=3.9 -y
conda activate app
# Linux and Windows
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia
# OSX
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 -c pytorch
pip install -r requirements.txt
pip install --upgrade --no-cache-dir gdown
python3 setup.py develop --no_cuda_ext
pip install streamlit
python3 -c "import gdown;gdown.download('https://drive.google.com/uc?id=14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X', './experiments/pretrained_models/', quiet=False)"
streamlit run app.py
- Upload image - (Click -> Browse files)
- To restore image (Click -> Submit)
- Download restored image - (Click -> Download Image)