-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Deployed b78f953 with MkDocs version: 1.6.1
- Loading branch information
0 parents
commit ae9deb7
Showing
86 changed files
with
20,130 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
<!-- `.md` and `.py` files are generated from the `.qmd` file. Please edit that file. --> | ||
|
||
--- | ||
title: "CPU vs. GPU benchmark" | ||
format: gfm | ||
eval: false | ||
--- | ||
|
||
!!! tip | ||
|
||
To run the code from this article as a Python script: | ||
|
||
```bash | ||
python3 examples/benchmark.py | ||
``` | ||
|
||
Let's evaluate the tinytopics topic model training speed on CPU vs. GPU on | ||
mainstream consumer hardware using simulated data. | ||
We will compare the time consumed under combinations of the three | ||
key parameters defining the problem size: | ||
|
||
- Number of documents (`n`). | ||
- Number of terms or vocabulary size (`m`). | ||
- Number of topics (`k`). | ||
|
||
Experiment environment: | ||
|
||
- GPU: 1x NVIDIA GeForce RTX 4090 (16384 CUDA cores, 24GB VRAM) | ||
- CPU: 1x AMD Ryzen 9 7950X3D (16 cores, 32 threads) | ||
- RAM: DDR5 6000MHz 2x32GB | ||
|
||
## Conclusions | ||
|
||
- Training time grows linearly as the number of documents (`n`) grows, on both CPU and GPU. | ||
- Similarly, training time grows as the number of topics (`k`) grows. | ||
- With `n` and `k` fixed and vocabulary size (`m`) grows, | ||
CPU time will grow linearly while GPU time stays constant. | ||
For `m` larger than a certain threshold, training on GPU will be faster than CPU. | ||
|
||
## Import tinytopics | ||
|
||
```{python} | ||
import time | ||
import torch | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
import tinytopics as tt | ||
``` | ||
|
||
## Basic setup | ||
|
||
Set seed for reproducibility: | ||
|
||
```{python} | ||
tt.set_random_seed(42) | ||
``` | ||
|
||
Define parameter grids: | ||
|
||
```{python} | ||
n_values = [1000, 5000] # Number of documents | ||
m_values = [1000, 5000, 10000, 20000] # Vocabulary size | ||
k_values = [10, 50, 100] # Number of topics | ||
avg_doc_length = 256 * 256 | ||
``` | ||
|
||
Create a data frame to store the benchmark results. | ||
|
||
```{python} | ||
benchmark_results = pd.DataFrame() | ||
def benchmark(X, k, device): | ||
start_time = time.time() | ||
model, losses = tt.fit_model(X, k, device=device) | ||
elapsed_time = time.time() - start_time | ||
return elapsed_time | ||
``` | ||
|
||
## Run experiment | ||
|
||
```{python} | ||
for n in n_values: | ||
for m in m_values: | ||
for k in k_values: | ||
print(f"Benchmarking for n={n}, m={m}, k={k}...") | ||
X, true_L, true_F = tt.generate_synthetic_data(n, m, k, avg_doc_length=avg_doc_length) | ||
# Benchmark on CPU | ||
cpu_time = benchmark(X, k, torch.device("cpu")) | ||
cpu_result = pd.DataFrame([{"n": n, "m": m, "k": k, "device": "CPU", "time": cpu_time}]) | ||
if not cpu_result.isna().all().any(): | ||
benchmark_results = pd.concat([benchmark_results, cpu_result], ignore_index=True) | ||
# Benchmark on GPU if available | ||
if torch.cuda.is_available(): | ||
gpu_time = benchmark(X, k, torch.device("cuda")) | ||
gpu_result = pd.DataFrame([{"n": n, "m": m, "k": k, "device": "GPU", "time": gpu_time}]) | ||
if not gpu_result.isna().all().any(): | ||
benchmark_results = pd.concat([benchmark_results, gpu_result], ignore_index=True) | ||
``` | ||
|
||
Save results to a CSV file: | ||
|
||
```{python} | ||
benchmark_results.to_csv("benchmark-results.csv", index=False) | ||
``` | ||
|
||
## Visualize results | ||
|
||
Plot the number of terms (`m`) against the time consumed, conditioning on | ||
the number of documents (`n`), for each number of topics (`k`). | ||
|
||
```{python} | ||
unique_series = len(n_values) * (2 if torch.cuda.is_available() else 1) | ||
colormap = tt.scale_color_tinytopics(unique_series) | ||
colors_list = [colormap(i) for i in range(unique_series)] | ||
for k in k_values: | ||
plt.figure(figsize=(7, 4.3), dpi=300) | ||
color_idx = 0 | ||
for n in n_values: | ||
subset = benchmark_results[ | ||
(benchmark_results["n"] == n) & (benchmark_results["k"] == k) | ||
] | ||
# Plot CPU results with a specific color | ||
plt.plot( | ||
subset[subset["device"] == "CPU"]["m"], | ||
subset[subset["device"] == "CPU"]["time"], | ||
label=f"CPU (n={n})", | ||
linestyle="--", | ||
marker="o", | ||
color=colors_list[color_idx], | ||
) | ||
color_idx += 1 | ||
# Plot GPU results if available | ||
if torch.cuda.is_available(): | ||
plt.plot( | ||
subset[subset["device"] == "GPU"]["m"], | ||
subset[subset["device"] == "GPU"]["time"], | ||
label=f"GPU (n={n})", | ||
linestyle="-", | ||
marker="x", | ||
color=colors_list[color_idx], | ||
) | ||
color_idx += 1 | ||
plt.xlabel("Vocabulary size (m)") | ||
plt.ylabel("Training time (seconds)") | ||
plt.title(f"Training time vs. vocabulary size (k={k})") | ||
plt.legend() | ||
plt.grid(True) | ||
plt.savefig(f"training-time-k-{k}.png", dpi=300) | ||
plt.close() | ||
``` | ||
|
||
![](images/benchmark/training-time-k-10.png) | ||
|
||
![](images/benchmark/training-time-k-50.png) | ||
|
||
![](images/benchmark/training-time-k-100.png) |
Oops, something went wrong.