Skip to content

An exploratory analysis of Spotify song tracks to predict song popularity using various Machine Learning Models.

License

Notifications You must be signed in to change notification settings

nandhakumarss/Spotify-EDA-Popularity-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Spotify-EDA-Popularity-Prediction

An exploratory analysis of Spotify song tracks to predict song popularity using various Machine Learning Models.

SPOTIFY EDA AND PREDICTION

ABSTRACT

Spotify is an online audio streaming and media service provider application. There are over 450 million monthly active users and it is famous application among the users all over the world. The Spotify application provides the user with various features and options. One such feature is their song recommendation system, It is very famous for this particular feature.

Spotify's most impressive piece of engineering is its use of convolutional neural networks (CNN). Using CNN, Spotify analyses raw audio data such as the song's BPM, musical key, loudness, etc., to classify songs based on music type and further optimise its recommendation engine.

We have done an exploratory analysis of Spotify song tracks to predict song popularity using various Machines Learning models.

ABOUT THE DATA

The data is about song and its features that are used to predict the popularity. There are 16 columns. 13 of which are song attributes. Here are the 13 track attributes: acousticness, danceability, durationms, energy, instrumentalness, key, liveness, loudness, mode, speechiness, tempo, timesignature, valence.

CONTENTS

  • Setting up the environment
  • Importing libraries
  • Uploading the data
  • Data Cleaning
  • EDA
  • Feature Engineering
  • Model Creation
  • Predictions

About

An exploratory analysis of Spotify song tracks to predict song popularity using various Machine Learning Models.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published