Skip to content

mudssrali/typescript-cheatsheet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 

Repository files navigation

header-image

Easy cheatsheet to learn Modern Typescript

PRs Welcome

Typing Objects

Object vs object

  • Object is the type of all instances of class Object OR Contains stuff (like toString(), hasOwnProperty()) that is present in all JavaScript objects. Any value (primitive, non-primitive) can be assigned to Object type.

    • It describes functionality that is common to all JavaScript objects
    • It includes primitive values
    const obj = {};
    obj instanceof Object; // true
    obj.toString === Object.prototype.toString; // true
    
    declare function create(x: Object);
    
    create("string"); // OK
    
    create(null); // Error
    create(undefined); // Error
  • object is the type of all non-primitive values. You can't assign to it any primitive type like boolean, number, string, bigint, symbol, null or undefined

    declare function create(x: object);
    
    create([]); // OK
    create({ id: 0 }); // OK
    
    create(42); // Error
    create("string"); // Error
    create(false); // Error
    create(undefined); // Error
  • {} is an empty object. It is the same as Object

Interface Signatures Overview

interface RepoInterface {
    isPublic: boolean; // property signature

    hasRequests(x: string): void; // method signature, 'x' for documentation only
    hasRequests: (x: string) => void; // method signature for ES6

    [propName: string]: any; // index signature
    (x: number): string; // call signature
    new (x: string): RepoInstance; // construct signature

    readonly admin: string; // readonly modifier
    readonly [index: number]: string; // you can make index readonly like this

    isArchive?: string; // optional modifier, auto set to undefined
    isArchive: undefined; // in this case need set the  property
}

Index Signature

Helps to describe Arrays or objects that are used as dictionaries.

If there are both an index signature and property and/or method signatures in an interface, the type of the index property value must also be a supertype of the type of the property value and/or method

interface RepoInterface {
    [propName: string]: boolean;

    // 'number' is not assignable to string index type 'boolean'
    star: number;

    // '() => string' is not assignable to string index type 'boolean'
    isCreated(): string;
}

// You can resolve above problem like this

interface RepoInterface {
    [propName: string]: number;
    star: number; // OK
    isCreated(): number; // OK
}

// Or you can do this to your interface

interface RepoInterface {
    [propName: string]: boolean | number | string;
    star: number; // OK
    isCreated(): string; // OK
}

Call Signature

Enables interfaces to describe functions. NOTE this is the optional calling context of the function in this example:

interface ClickListener {
    (this: Window, e: MouseEvent): void;
}

const myListener: ClickListener = (e) => {
    console.log("mouse clicked!", e);
};

addEventListener("click", myListener);

Construct Signature

Enables describing classes and constructor functions. A class has two types:

  • The type of the static side
  • The type of the instance side

The constructor sits in the static side, when a class implements an interface, only the instance side of the class is checked.

interface ClockInterface {
  tick(): void
}

interface ClockConstructor {
  new (h: number, m: number): ClockInterface
}

/*
* Using Class Expression
*/

const ClockA: ClockConstructor = class Clock implements ClockInterface {
  constructor(h: number, m: number) {...}
  tick() {...}
}

const clockClassExp = new ClockA(18, 11)

/*
* Using Class Declaration with a Constructor Function
*/

class ClockB implements ClockInterface {
  constructor(h: number, m: number) {...}
  tick() {...}
}

function createClock( ctor: ClockConstructor, h: number, m: number): ClockInterface {
  return new ctor(h, m)
}

const clockClassDeclaration = createClock(ClockB, 12, 17)

Typescript Docs - Class Type

Type Literal Syntax

Typically used in the signature of a higher-order function, but it's not limited to this.

type Point = {
    x: number;
    y: number;
};

type SetPoint = (x: number, y: number) => void;

Excess Properties

  • Engineers can’t just think of interfaces as “objects that have exactly a set of properties” or “objects that have at least a set of properties”. In-line object arguments receive an additional level of validation that doesn’t apply when they’re passed as variables.

  • TypeScript is a structurally typed language. To create a Dog you don’t need to explicitly extend the Dog interface, any object with a breed property that is of type string can be used as a Dog:

interface Dog {
    breed: string;
}

function printDog(dog: Dog) {
    console.log("Dog: " + dog.breed);
}

const ginger = {
    breed: "Airedale",
    age: 3,
};

printDog(ginger); // excess properties are OK!

printDog({ breed: "Airedale", age: 3 }); // ERRORS

/*
  Argument of type '{ breed: string; age: number }' is not assignable to parameter of type 'Dog'.
  Object literal may only specify known properties, and 'age' does not exist in type 'Dog'.
*/

// To get rid of above problem, you can define interface with extra proprty with string index signature

interface Dog {
    breed: string;
    [propName: string]: any;
}

Interface vs Type

Unlike an interface declaration, which always introduces a named object type, a type alias declaration can introduce a name for any kind of type, including primitive, union, and intersection types. With examples, you can find some in-depth difference between interface and type.

  • Objects / Functions

    Both can be used to describe the shape of an object or a function signature. But the syntax differs.

    Interface

    interface Point {
        x: number;
        y: number;
    }
    
    interface SetPoint {
        (x: number, y: number): void;
    }

    Type alias

    type Point = {
        x: number;
        y: number;
    };
    
    type SetPoint = (x: number, y: number) => void;
  • Other Types

    Unlike an interface, the type alias can also be used for other types such as primitives, unions, and tuples (Aforementioned).

    // primitive
    type Name = string;
    
    // object
    type PartialPointX = { x: number };
    type PartialPointY = { y: number };
    
    // union
    type PartialPoint = PartialPointX | PartialPointY;
    
    // tuple
    type Data = [number, string];
  • Extend

    Both can be extended, but again, the syntax differs. Additionally, note that an interface and type alias are not mutually exclusive. An interface can extend a type alias, and vice versa.

    interface extends interface

    interface PartialPointX {
        x: number;
    }
    interface Point extends PartialPointX {
        y: number;
    }

    type alias extends type alias

    type PartialPointX = { x: number };
    type Point = PartialPointX & { y: number };

    interface extends type alias

    type PartialPointX = { x: number };
    interface Point extends PartialPointX {
        y: number;
    }

    type alias extends interface

    interface PartialPointX {
        x: number;
    }
    type Point = PartialPointX & { y: number };
  • Implements

    A class can implement an interface or type alias, both in the same exact way. Note however that a class and interface are considered static blueprints. Therefore, they can not implement / extend a type alias that names a union type.

    interface Point {
        x: number;
        y: number;
    }
    
    class SomePoint implements Point {
        x = 1;
        y = 2;
    }
    
    type Point2 = {
        x: number;
        y: number;
    };
    
    class SomePoint2 implements Point2 {
        x = 1;
        y = 2;
    }
    
    type PartialPoint = { x: number } | { y: number };
    
    // ERROR: can not implement a union type
    class SomePartialPoint implements PartialPoint {
        x = 1;
        y = 2;
    }
    /*
    A class can only implement an object type or intersection of object types with statically known members.
    */
  • Declaration merging

    Unlike a type alias, an interface can be defined multiple times, and will be treated as a single interface (with members of all declarations being merged).

    // These two declarations become:
    // interface Point { x: number y: number }
    interface Point {
        x: number;
    }
    interface Point {
        y: number;
    }
    
    const point: Point = { x: 1, y: 2 };

Mapped Types - Getting Types from Data

typeof / keyof Examples

const data = {
    value: 123,
    text: "text",
    subData: {
        value: false,
    },
};

type Data = typeof data; // Data = { value: number; text: string; subData: { value: boolean; } }
const data = ["A", "B"] as const;
type Data = typeof data[number]; // "A" | "B"
const locales = [
    {
        locale: "se",
        language: "Swedish",
    },
    {
        locale: "en",
        language: "English",
    },
] as const;

type Locale = typeof locales[number]["locale"]; // "se" | "en"
const currencySymbols = {
    GBP: "£",
    USD: "$",
    EUR: "€",
};
type CurrencySymbol = keyof typeof currencySymbols; // "GBP" | "USD" | "EUR"

keyof with Generics and Interfaces Example

Exampl-1:

interface HasPhoneNumber {
    name: string;
    phone: number;
}

interface HasEmail {
    name: string;
    email: string;
}

interface CommunicationMethods {
    email: HasEmail;
    phone: HasPhoneNumber;
    fax: { fax: number };
}

function contact<K extends keyof CommunicationMethods>(
    method: K,
    contact: CommunicationMethods[K] // turning key into value - a mapped type
) {
    // do something...
}

contact("email", { name: "foo", email: "mike@example.com" });
contact("phone", { name: "foo", phone: 3213332222 });
contact("fax", { fax: 1231 });

// // we can get all values by mapping through all keys
type AllCommKeys = keyof CommunicationMethods;
type AllCommValues = CommunicationMethods[keyof CommunicationMethods];

Exampl-2:

Let's take a prop function

function prop<T, K extends keyof T>(obj: T, key: K) {
    return obj[key];
}

const todo = {
    id: 1,
    text: "Buy milk",
    due: new Date(2016, 11, 31),
};

const id = prop(todo, "id"); // number
const text = prop(todo, "text"); // string
const due = prop(todo, "due"); // Date

Lookup Types

interface Person {
    name: string;
    age: number;
    location: string;
}

type P1 = Person["name"]; // string
type P2 = Person["name" | "age"]; // string | number

// typing from string operations

type P3 = string["charAt"]; // (pos: number) => string
type P4 = string[]["push"]; // (...items: string[]) => number
type P5 = string[][0]; // string

Article Links:

Immutability

readonly Properties

Properties marked with readonly can only be assigned to during initialization or from within a constructor of the same class.

type Point = {
    readonly x: number;
    readonly y: number;
};

const origin: Point = { x: 0, y: 0 }; // OK
origin.x = 100; // Error

function moveX(p: Point, offset: number): Point {
    p.x += offset; // Error
    return p;
}

function moveX(p: Point, offset: number): Point {
    // OK
    return {
        x: p.x + offset,
        y: p.y,
    };
}

readonly Class Properties

Gettable area property is implicitly read-only because there’s no setter:

class Circle {
    readonly radius: number;

    constructor(radius: number) {
        this.radius = radius;
    }

    get area() {
        return Math.PI * this.radius ** 2;
    }
}

readonly Array / Tuple

Here are different usecases of readonly

  • readonly property

    interface Apple {
      readonly types: string[]
      readonly origin: [string, string]
    }
    
    const apple: Apple = {
      types: ["Asian", "American", "European"]
      origin: ["Local", "Home Grown"]
    }
    
    apple.types.push("Russian") // OK, array is now mutable
  • property has readonly type

    interface Apple {
      types: readonly string[]
      origin: readonly [string, string]
    }
    
    const apple: Apple = {
      types: ["Asian", "American", "European"]
      origin: ["Local", "Home Grown"]
    }
    
    apple.types.push("Russian") // Error, Property `push` does not exist on type 'readonly string[]'
  • Variable declaration with readonly

    const array: readonly string[];
    const tuple: readonly [string, string];

const Assertions

  • number becomes number literal

    // Type '10'
    let num = 10 as const;
  • array literals become readonly tuples

    // Type 'readonly [10, 20]'
    let tuple = [10, 20] as const;
  • object literals get readonly properties

  • no literal types in that expression should be widened (e.g. no going from "hello" to string)

    // Type '{ readonly text: "hello" }'
    let input = { text: "hello" } as const;
  • object literals with array types becomes also readonly

    // Type `{ readonly types: readonly ["A", "B"]}`
    let apple = { types: ["A", "B"] } as const;
    
    apple.types = ["C"]; // Error, 'types' is readonly, we can't reassign
    apple.push("C"); // Error, Property 'push' does not exist on type 'readonly ["A", "B", "C"]'
  • const contexts don’t immediately convert an expression to be fully immutable.

    let types = ["Asian", "European"];
    
    let apple = {
        name: "Green Apple",
        types: types,
    } as const;
    
    apple.name = "Red Apple"; // Error
    apple.types = ["American"]; // Error
    
    aaple.types.push("African"); // OK
    
    // to fix above, just do this little trick
    
    let types = ["Asian", "European"] as const;
    // OR
    let types: readonly string[] = ["Asian", "European"];

Strict Mode

  strict: true /* Enable all strict type-checking options. */

is equivalent to enabling all of the strict mode family options:

  noImplicitAny: true /* Raise error on expressions and declarations with an implied 'any' type */,
  strictNullChecks: true /* Enable strict null checks */,
  strictFunctionTypes: true /* Enable strict checking of function types */,
  strictBindCallApply: true /* Enable strict 'bind', 'call', and 'apply' methods on functions */,
  strictPropertyInitialization: true /* Enable strict checking of property initialization in classes */,
  noImplicitThis: true /* Raise error on 'this' expressions with an implied 'any' type */,
  alwaysStrict: true /* Parse in strict mode and emit "use strict" for each source file */

You can then turn off individual strict mode family checks as needed.

Non-Nullable Types --strictNullChecks

In strict null checking mode, null and undefined are no longer assignable to every type.

let name: string;
name = "Marius"; // OK
name = null; // Error
name = undefined; // Error
let name: string | null;
name = "Marius"; // OK
name = null; // OK
name = undefined; // Error

Optional parameter ? automatically adds | undefined

type User = {
    firstName: string;
    lastName?: string; // same as `string | undefined`
};
  • In JavaScript, every function parameter is optional, when left off their value is undefined.
  • We can get this functionality in TypeScript by adding a ? to the end of parameters we want to be optional. This is different from adding | undefined which requires the parameter to be explicitly passed as undefined
function fn1(x: number | undefined): void {
  ...
}

function fn2(x?: number): void {
  ...
}

fn1() // Error
fn2() // OK
fn1(undefined) // OK
fn2(undefined) // OK

Type guard needed to check if Object is possibly null:

function getLength(s: string | null) {
    // Error: Object is possibly 'null'.
    return s.length;
}
function getLength(s: string | null) {
    if (s === null) {
        return 0;
    }
    return s.length;
}

// JS's truthiness semantics support type guards in conditional expressions
function getLength(s: string | null) {
    return s ? s.length : 0;
}
function doSomething(callback?: () => void) {
    // Error: Object is possibly 'undefined'.
    callback();
}
function doSomething(callback?: () => void) {
    if (typeof callback === "function") {
        callback();
    }
}

Strict Bind Call Apply --strictBindCallApply

The call() method calls a function with a given this value and arguments provided individually, while apply() accepts a single array of arguments.

The bind() method creates a new function that, when called, has its this keyword set to the provided value.

When set, TypeScript will check that the built-in methods of functions call, bind, and apply are invoked with correct argument for the underlying function:

// With strictBindCallApply on
function fn(x: string) {
    return parseInt(x);
}

const n1 = fn.call(undefined, "10"); // OK
const n2 = fn.call(undefined, false); // Argument of type 'false' is not assignable to parameter of type 'string'.

Strict Class Property Initialization --strictPropertyInitialization

Verify that each instance property declared in a class either:

  • Has an explicit initializer, or
  • Is definitely assigned to in the constructor
// Error
class User {
    // Type error: Property 'username' has no initializer
    // and is not definitely assigned in the constructor
    username: string;
}

// OK
class User {
    username = "n/a";
}

const user = new User();
const username = user.username.toLowerCase();

// OK
class User {
    constructor(public username: string) {}
}

const user = new User("adam");
const username = user.username.toLowerCase();
  • Has a type that includes undefined
class User {
    username: string | undefined;
}

const user = new User();

// Whenever we want to use the username property as a string, we first have
// to make sure that it actually holds a string, not the value undefined
const username =
    typeof user.username === "string" ? user.username.toLowerCase() : "n/a";

Types

never

never represents the type of values that never occur. It is used in the following two places:

  • As the return type of functions that never return
  • As the type of variables under type guards that are never true

never can be used in control flow analysis:

function controlFlowAnalysisWithNever(value: string | number) {
    if (typeof value === "string") {
        value; // Type string
    } else if (typeof value === "number") {
        value; // Type number
    } else {
        value; // Type never
    }
}

unknown

unknown is the type-safe counterpart of the any type: we have to do some form of checking before performing most operations on values of type unknown.

Reading JSON from localStorage using unknown Example

type Result =
    | { success: true; value: unknown }
    | { success: false; error: Error };

function tryDeserializeLocalStorageItem(key: string): Result {
    const item = localStorage.getItem(key);

    if (item === null) {
        // The item does not exist, thus return an error result
        return {
            success: false,
            error: new Error(`Item with key "${key}" does not exist`),
        };
    }

    let value: unknown;

    try {
        value = JSON.parse(item);
    } catch (error) {
        // The item is not valid JSON, thus return an error result
        return {
            success: false,
            error,
        };
    }

    // Everything's fine, thus return a success result
    return {
        success: true,
        value,
    };
}

Generics

Generics enable you to create reusable code components that work with a number of types instead of a single type.

With and Without Type Argument Inference

function identity<T>(arg: T): T {
    return arg;
}

let output = identity<string>("myString"); // type of output will be 'string'
let output = identity("myString"); // type argument inference
// compiler sets the value of `T` based on the type of the argument we pass in

Working with Generic Type Variables

function loggingIdentity<T>(arg: T): T {
    console.log(arg.length); // Error: T doesn't have .length
    return arg;
}

// to specify .length property we should make generic T to T[] or Array<T>

function loggingIdentity<T>(arg: Array<T>): Array<T> {
    console.log(arg.length); // Array has a .length, so no more error
    return arg;
}

Using More Than One Type Argument

No value arguments are needed in this case:

function makePair<F, S>() {
    let pair: { first: F; second: S };

    function getPair() {
        return pair;
    }

    function setPair(x: F, y: S) {
        pair = {
            first: x,
            second: y,
        };
    }
    return { getPair, setPair };
}

// Creates a (number, string) pair
const { getPair, setPair } = makePair<number, string>();

setPair(1, "y"); // must be type of (number, string)
getPair(); // will return pair of type { number, string }

Higher Order Function with Parameters<T> and ReturnType<T>

// Input a function `<T extends (...args: any[]) => any>`
// Output a function with same params and return type `:(...funcArgs: Parameters<T>) => ReturnType<T>`

function logDuration<T extends (...args: any[]) => any>(func: T) {
    const funcName = func.name;

    // Return a new function that tracks how long the original took
    return (...args: Parameters<T>): ReturnType<T> => {
        console.time(funcName);
        const results = func(...args);
        console.timeEnd(funcName);
        return results;
    };
}

function addNumbers(a: number, b: number): number {
    return a + b;
}
// Hover over is `addNumbersWithLogging: (a: number, b: number) => number`
const addNumbersWithLogging = logDuration(addNumbers);

addNumbersWithLogging(5, 3);

A generic class has a similar shape to a generic interface. Generic classes have a generic type parameter list in angle brackets (<>) following the name of the class.

class GenericNumber<T> {
    zeroValue: T;
    add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();

myGenericNumber.zeroValue = 0;
myGenericNumber.add = function (x, y) {
    return x + y;
};

Discriminated Unions

Discriminated Unions provide a powerful pattern in TypeScript. Immensely useful for actions & reducers in ngrx/redux, and every time you have to distinguish between kinds of objects. They enaWtype inference which, combined with strict null checks, will catch a lot of bugs! By Minko Gechev

const enum Entity {
    Individual,
    Corporation,
}

interface Individual {
    type: Entity.Individual;
    ssn: string;
}

interface Corporation {
    type: Entity.Corporation;
    ein: string;
}

type TaxPayer = Individual | Corporation;

function magic(payer: TaxPayer) {
    if (payer.type === Entity.Individual) {
        taxIdentifier(payer.ssn);
        taxIdentifier(payer.ein); // Property 'ein' does not exist on type 'Individual'
    } else {
        taxIdentifier(payer.ein);
        taxIdentifier(payer.ssn); // Property 'ssn' doesn't exist on type 'Corporation'
    }
}

Optional Chaining

?. returns undefined when hitting a null or undefined

Album where the artist, and the artists biography might not be present in the data.

type AlbumAPIResponse = {
    title: string;
    artist?: {
        name: string;
        bio?: string;
        previousAlbums?: string[];
    };
};

// Instead of:
const maybeArtistBio = album.artist && album.artist.bio;

// ?. acts differently than && on "falsy" values: empty string, 0, NaN, false
const artistBio = album?.artist?.bio;

// optional chaining also works with the [] operators when accessing elements
// see more example for optional element access below
const maybeArtistBioElement = album?.["artist"]?.["bio"];
const maybeFirstPreviousAlbum = album?.artist?.previousAlbums?.[0];

Optional chaining on an optional function:

interface OptionalFunction {
    bar?: () => number;
}

const foo: OptionalFunction = {};
const bat = foo.bar?.(); // number | undefined
  • Optional Element Access

the optional element access which acts similarly to optional property accesses, but allows us to access non-identifier properties (e.g. arbitrary strings, numbers, and symbols):

/**
 * Get the first element of the array if we have an array.
 * Otherwise return undefined.
 */
function tryGetFirstElement<T>(arr?: T[]) {
    return arr?.[0];

    // equivalent to
    //   return (arr === null || arr === undefined) ?
    //       undefined :
    //       arr[0]
}
  • Optional Call

optional call, which allows us to conditionally call expressions if they’re not null or undefined.

async function makeRequest(url: string, log?: (msg: string) => void) {
    log?.(`Request started at ${new Date().toISOString()}`);

    // roughly equivalent to
    //   if (log != null) {
    //       log(`Request started at ${new Date().toISOString()}`)
    //   }

    const result = (await fetch(url)).json();

    log?.(`Request finished at at ${new Date().toISOString()}`);

    return result;
}
  • Short-circutting

The short-circuiting behavior that optional chains have is limited property accesses, calls, element accesses - it doesn’t expand any further out from these expressions.

let result = foo?.bar / someComputation();
// doesn’t stop the division or someComputation() call from occurring. It’s equivalent to

let temp = foo === null || foo === undefined ? undefined : foo.bar;

let result = temp / someComputation();

Nullish Coalescing

?? “fall Backs” to a Default Value When Dealing with null or undefined

Value foo will be used when it’s “present”; but when it’s null or undefined, calculate bar() in its place.

let x = foo ?? bar();
// instead of
let x = foo !== null && foo !== undefined ? foo : bar();

It can replace uses of || when trying to use a default value, and avoids bugs. When localStorage.volume is set to 0, the page will set the volume to 0.5 which is unintended. ?? avoids some unintended behaviour from 0, NaN and "" being treated as falsy values.

function initializeAudio() {
    let volume = localStorage.volume || 0.5; // Potential bug
}

Comments

ts-expect-error - 3.9

TypeScript 3.9 brings a new feature: // @ts-expect-error comments. When a line is prefixed with a // @ts-expect-error comment, TypeScript will suppress that error from being reported; but if there’s no error, TypeScript will report that // @ts-expect-error wasn’t necessary.

// @ts-expect-error
console.log(47 * "octopus"); // OK, no problem here

// @ts-expect-error
console.log(1 + 1); // Unused '@ts-expect-error' directive.

ts-expect-error vs ts-ignore

In some ways // @ts-expect-error can act as a suppression comment, similar to // @ts-ignore. The difference is that // @ts-ignore will do nothing if the following line is error-free.

You might be tempted to switch existing // @ts-ignore comments over to // @ts-expect-error, and you might be wondering which is appropriate for future code. While it’s entirely up to you and your team, we have some ideas of which to pick in certain situations.

Pick ts-expect-error if:

  • you’re writing test code where you actually want the type system to error on an operation
  • you expect a fix to be coming in fairly quickly and you just need a quick workaround
  • you’re in a reasonably-sized project with a proactive team that wants to remove suppression comments as soon affected code is valid again

Pick ts-ignore if:

  • you have an a larger project and and new errors have appeared in code with no clear owner
  • you are in the middle of an upgrade between two different versions of TypeScript, and a line of code errors in one version but not another.
  • you honestly don’t have the time to decide which of these options is better

TS 4.0 - 4.2

  • Short-Circuiting Assignment Operators
  • Template Literal Types
  • Key Remapping in Mapped Types
  • Checked Indexed Accesses (--noUncheckedIndexedAccess)
  • Paths without baseUrl
  • Destructured Variables Can Be Explicitly Marked as Unused

TS 4.3 - 4.4

  • (Template String Type Improvements)
  • (Editor Support for @link Tags)
  • (Go-to-Definition on Non-JavaScript File Paths)
  • (Inlay Hints)

TS 4.5 - 5.4

Will update soon

⬆️ Back to top

Thanks goes to these people for great examples:

MIT-LICENSE

About

An easy Typescript learning cheat-sheet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published