-
Notifications
You must be signed in to change notification settings - Fork 0
autooptimizer is a python package for optimize machine learning algorithms.
License
MIT, MIT licenses found
Licenses found
MIT
LICENSE.md
MIT
LICENSE.txt
mrb987/autooptimizer
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
AutoOptimizer package provides tools for automatically optimizing machine learning models. It uses Exhaustive Search Mechanism with Hyperparameter Tuning for optimizing machine learning models. It also provides evaluation metrics for regression models, and ability to delete outliers with several methods. #Prerequisites: >{ sklearn - numpy - pandas } #Install package: >pip install autooptimzer #Install package in jupyter lab: >1- open anaconda prompt (It is recommended open as administrator) >2- pip install autooptimzer #Usage: >Optimize machine learning models using python. >>Clustering: DBSCAN, KMeans, MeanShift, Mini Batch K-Means >>Supervised: KNeighborsClassifier, KNeighborsRegressor, DecisionTreeClassifier, DecisionTreeRegressor, SupportVectorClassifier, SupportVectorRegressor, LogisticRegression, LinearRegression >>Ensemble: RandomForestClassifier, RandomForestRegressor, GradientBoostingClassifier, GradientBoostingRegressor, AdaBoostClassifier, AdaBoostRegressor, BaggingClassifier, BaggingRegressor, ExtraTreesClassifier >Metrics for regression models. >Clear data by removing outliers. Download Document: https://genesiscube.ir/wp-content/uploads/2023/03/Auto-Optimizer-document-0.8.9.pdf For more information visit: https://genesiscube.ir/autooptimizer/ #Contact and Contributing: Please share your good ideas with us. Thanks for contributing with the program. >>info@GenesisCube.ir >>www.GenesisCube.ir
About
autooptimizer is a python package for optimize machine learning algorithms.
Topics
Resources
License
MIT, MIT licenses found
Licenses found
MIT
LICENSE.md
MIT
LICENSE.txt
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published