Skip to content
forked from zsteve/pcurvepy

Principal curves implementation (Hastie '89) in Python

License

Notifications You must be signed in to change notification settings

mossjacob/pcurvepy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pcurvepy

Principal Curves

This is an implementation of the Principal Curves (Hastie '89) algorithm in Python.

It is a fork of the zsteve/pcurvepy package where the projection indices are selected according to our translation of the R/C++ princurve package.

Installation:

pip install pcurvepy2

Example:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pcurve

data = pd.read_csv('test_data.csv')
x = data.loc[:, ('X1', 'X2')].to_numpy()

# transform data to have zero mean
x = x - np.mean(x, 0)
index = np.arange(0, len(x))

curve = pcurve.PrincipalCurve(k=5)
curve.fit(x)

plt.scatter(x[:, 0], x[:, 1], alpha=0.25, c=index)
plt.plot(curve.points[:, 0], curve.points[:, 1], c='k')

# get interpolation indices
pseudotime_interp, point_interp, order = curve.unpack_params()

example

About

Principal curves implementation (Hastie '89) in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%