We are announcing our decision to stop development of the MongoDB server-side Swift driver. No further development, bug fixes, enhancements, documentation changes or maintenance will be provided by this project and pull requests will no longer be accepted.
There are still ways to use MongoDB with Swift:
- Use the MongoDB driver with server-side Swift applications as is
- Use the MongoDB C Driver directly in your server-side Swift projects
- Usage of another community Swift driver, mongokitten
Community members and developers are welcome to fork our existing driver and add features as you see fit - the Swift driver is under the Apache 2.0 license and source code is available on GitHub. For those developing client/mobile applications, MongoDB offers the Realm Swift SDK with real time sync to MongoDB Atlas.
We would like to take this opportunity to express our heartfelt appreciation for the enthusiastic support that the Swift community has shown for MongoDB. Your loyalty and feedback have been invaluable to us throughout our journey, and we hope to resume development on the server-side Swift driver in the future.
The official MongoDB driver for Swift applications on macOS and Linux.
The latest documentation for the driver is available here. The latest documentation for the driver's BSON library is available here.
Think you've found a bug? Want to see a new feature in mongo-swift-driver
? Please open a case in our issue management tool, JIRA:
- Create an account and login: jira.mongodb.org
- Navigate to the SWIFT project: jira.mongodb.org/browse/SWIFT
- Click Create Issue - Please provide as much information as possible about the issue and how to reproduce it.
Bug reports in JIRA for all driver projects (i.e. NODE, PYTHON, CSHARP, JAVA) and the Core Server (i.e. SERVER) project are public.
Please see SECURITY.md for details on our security process.
The driver supports use with Swift 5.1+. The minimum macOS version required to build the driver is 10.14. The driver is tested in continuous integration against macOS 11 and 12, and Ubuntu 18.04 and 20.04.
Installation is supported via Swift Package Manager.
You can find details about all our versions in this repo's releases page.
The driver vendors and wraps the MongoDB C driver (libmongoc
), which depends on a number of external C libraries when built in Linux environments. As a result, these libraries must be installed on your system in order to build MongoSwift.
To install those libraries, please follow the instructions from libmongoc
's documentation.
The driver contains two modules to support a variety of use cases: an asynchronous API in MongoSwift
, and a synchronous API in MongoSwiftSync
. The modules share a number of core types such as options struct
s.
The driver depends on our library swift-bson
, containing a BSON implementation. All BSON symbols are re-exported from the drivers' modules, so you do not need to explicitly import BSON
in your application.
To install the driver, add the package and relevant module as a dependency in your project's Package.swift
file:
// swift-tools-version:5.1
import PackageDescription
let package = Package(
name: "MyPackage",
platforms: [
.macOS(.v10_14) // minimum macOS version driver supports
],
dependencies: [
.package(url: "https://github.com/mongodb/mongo-swift-driver", .upToNextMajor(from: "1.3.1"))
],
targets: [
// Async module
.target(name: "MyAsyncTarget", dependencies: ["MongoSwift"]),
// Sync module
.target(name: "MySyncTarget", dependencies: ["MongoSwiftSync"])
]
)
Then run swift build
to download, compile, and link all your dependencies.
Note: You should call cleanupMongoSwift()
exactly once at the end of your application to release all memory and other resources allocated by libmongoc
.
Async/Await (recommended):
import MongoSwift
import NIOPosix
let elg = MultiThreadedEventLoopGroup(numberOfThreads: 4)
let client = try MongoClient("mongodb://localhost:27017", using: elg)
defer {
// clean up driver resources
try? client.syncClose()
cleanupMongoSwift()
// shut down EventLoopGroup
try? elg.syncShutdownGracefully()
}
let db = client.db("myDB")
let collection = try await db.createCollection("myCollection")
// use collection...
Async (EventLoopFuture
s):
import MongoSwift
import NIOPosix
let elg = MultiThreadedEventLoopGroup(numberOfThreads: 4)
let client = try MongoClient("mongodb://localhost:27017", using: elg)
defer {
// clean up driver resources
try? client.syncClose()
cleanupMongoSwift()
// shut down EventLoopGroup
try? elg.syncShutdownGracefully()
}
let db = client.db("myDB")
let result = db.createCollection("myCollection").flatMap { collection in
// use collection...
}
Sync:
import MongoSwiftSync
defer {
// free driver resources
cleanupMongoSwift()
}
let client = try MongoClient("mongodb://localhost:27017")
let db = client.db("myDB")
let collection = try db.createCollection("myCollection")
// use collection...
Note: we have included the client connectionString
parameter for clarity, but if connecting to the default "mongodb://localhost:27017"
it may be omitted.
Async/Await (recommended):
let doc: BSONDocument = ["_id": 100, "a": 1, "b": 2, "c": 3]
let result = try await collection.insertOne(doc)
print(result?.insertedID ?? "") // prints `.int64(100)`
Async (EventLoopFuture
s):
let doc: BSONDocument = ["_id": 100, "a": 1, "b": 2, "c": 3]
collection.insertOne(doc).whenSuccess { result in
print(result?.insertedID ?? "") // prints `.int64(100)`
}
Sync:
let doc: BSONDocument = ["_id": 100, "a": 1, "b": 2, "c": 3]
let result = try collection.insertOne(doc)
print(result?.insertedID ?? "") // prints `.int64(100)`
Async/Await (recommended):
let query: BSONDocument = ["a": 1]
// The `sort` option specifies the order in which results are returned
// via the cursor. In this case, `["_id": -1]` indicates that the documents will
// be returned in descending order according to the `_id` field.
let options = FindOptions(sort: ["_id": -1])
for try await doc in try await collection.find(query, options: options) {
print(doc)
}
Async (EventLoopFuture
s):
let query: BSONDocument = ["a": 1]
// The `sort` option specifies the order in which results are returned
// via the cursor. In this case, `["_id": -1]` indicates that the documents will
// be returned in descending order according to the `_id` field.
let options = FindOptions(sort: ["_id": -1])
let result = collection.find(query, options: options).flatMap { cursor in
cursor.forEach { doc in
print(doc)
}
}
Sync:
let query: BSONDocument = ["a": 1]
// The `sort` option specifies the order in which results are returned
// via the cursor. In this case, `["_id": -1]` indicates that the documents will
// be returned in descending order according to the `_id` field.
let options = FindOptions(sort: ["_id": -1])
let documents = try collection.find(query, options: options)
for d in documents {
print(try d.get())
}
var doc: BSONDocument = ["a": 1, "b": 2, "c": 3]
print(doc) // prints `{"a" : 1, "b" : 2, "c" : 3}`
print(doc["a"] ?? "") // prints `.int64(1)`
// Set a new value
doc["d"] = 4
print(doc) // prints `{"a" : 1, "b" : 2, "c" : 3, "d" : 4}`
// Using functional methods like map, filter:
let evensDoc = doc.filter { elem in
guard let value = elem.value.asInt() else {
return false
}
return value % 2 == 0
}
print(evensDoc) // prints `{ "b" : 2, "d" : 4 }`
let doubled = doc.map { elem -> Int in
guard case let value = .int64(value) else {
return 0
}
return Int(value * 2)
}
print(doubled) // prints `[2, 4, 6, 8]`
Note that BSONDocument
conforms to Collection
, so useful methods from
Sequence
and
Collection
are
all available. However, runtime guarantees are not yet met for many of these
methods.
The Examples/
directory contains sample web application projects that use the driver with Kitura, Vapor, and Perfect.
We also have an example full-stack Swift app with an iOS frontend and a backend built with Vapor.
Please note that the driver is built using SwiftNIO 2, and therefore is incompatible with frameworks built upon SwiftNIO 1. SwiftNIO 2 is used as of Vapor 4.0 and Kitura 2.5.
See our development guide for instructions for building and testing the driver.