-
-
Notifications
You must be signed in to change notification settings - Fork 2
Existing Features from other fairness packages
siyi wei edited this page May 28, 2021
·
11 revisions
- Accuracy parity metric : (TP + TN) / (TP + FP + TN + FN)
- Demographic parity metric : (TP + FP)
- Equalized Odds metric : TP / (TP + FN)
- False Negative Rate (FNR) parity metric : FN / (TP + FN)
- False Positive Rate (FPR) parity metric : FP / (TN + FP)
- Matthews Correlation Coefficient (MCC) parity metric : (TP × TN - FP × FN) / sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))
- Negative Predictive Value (NPV) parity metric : TN / (TN + FN)
- Predictive Rate Parity metric : TP / (TP + FP)
- Proportional parity metric : (TP + FP) / (TP + FP + TN + FN
- ROC AUC parity metric
- Specificity parity metric : TN / (TN + FP)
- Reweighing
- Adversarial debiasing
- Reject Option Based Classification
- Optimized Pre-Processing
- Disparate Impact Remover
- Learning Fair Representations
- Calibrated Equalized Odds Post-processing
- Equalized Odds Post-processing
- Meta Fair Classifier
- Prejudice Remover
- Statistical Parity Difference
- Equal Opportunity Difference
- Average Odds Difference
- Disparate Impact
- Theil Index
- Euclidean Distance
- Mahalanobis Distance
- Manhattan Distance
- Accuracy