Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: pass parameter values in design #31

Merged
merged 2 commits into from
May 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
# mlr3batchmark (development version)

* feat: `reduceResultsBatchmark` gains argument `fun` which is passed on to `batchtools::reduceResultsList`, useful for deleting model data to avoid running out of memory, https://github.com/mlr-org/mlr3batchmark/issues/18 Thanks to Toby Dylan Hocking @tdhock for the PR.
* docs: A warning is now given when the loaded mlr3 version differs from the
mlr3 version stored in the trained learners
* Support marshaling
* feat: The design of `batchmark()` can now include parameter settings.
* feat: `reduceResultsBatchmark` gains argument `fun` which is passed on to `batchtools::reduceResultsList`.
Useful for deleting model data to avoid running out of memory.
Thanks to Toby Dylan Hocking @tdhock for the PR (https://github.com/mlr-org/mlr3batchmark/issues/18).
* docs: A warning is now given when the loaded mlr3 version differs from the mlr3 version stored in the trained learners
* feat: support marshaling

# mlr3batchmark 0.1.1

Expand Down
12 changes: 12 additions & 0 deletions R/assertions.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
assert_param_values = function(x, n_learners = NULL, .var.name = vname(x)) {
assert_list(x, len = n_learners, .var.name = .var.name)

ok = every(x, function(x) {
test_list(x) && every(x, test_list, names = "unique", null.ok = TRUE)
})

if (!ok) {
stopf("'%s' must be a three-time nested list and the most inner list must be named", .var.name)
}
invisible(x)
}
32 changes: 27 additions & 5 deletions R/batchmark.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
#' reduceResultsBatchmark(reg = reg)
batchmark = function(design, store_models = FALSE, reg = batchtools::getDefaultRegistry()) {
design = as.data.table(assert_data_frame(design, min.rows = 1L))
assert_names(names(design), permutation.of = c("task", "learner", "resampling"))
assert_names(names(design), must.include = c("task", "learner", "resampling"))
assert_flag(store_models)
batchtools::assertRegistry(reg, class = "ExperimentRegistry", writeable = TRUE, sync = TRUE,
running.ok = FALSE)
Expand All @@ -53,10 +53,22 @@ batchmark = function(design, store_models = FALSE, reg = batchtools::getDefaultR
batchtools::addAlgorithm("run_learner", fun = run_learner, reg = reg)
}

# group per problem to speed up addExperiments()
# set hashes
set(design, j = "task_hash", value = map_chr(design$task, "hash"))
set(design, j = "learner_hash", value = map_chr(design$learner, "hash"))
set(design, j = "resampling_hash", value = map_chr(design$resampling, "hash"))

# expand with param values
if (is.null(design$param_values)) {
design$param_values = list()
} else {
design$param_values = list(assert_param_values(design$param_values, n_learners = length(design$learner)))
task = learner = resampling = NULL
design = design[, list(task, learner, resampling, param_values = unlist(get("param_values"), recursive = FALSE)), by = c("learner_hash", "task_hash", "resampling_hash")]
}
design[, "param_values_hash" := map(get("param_values"), calculate_hash)]

# group per problem to speed up addExperiments()
design[, "group" := .GRP, by = c("task_hash", "resampling_hash")]

groups = unique(design$group)
Expand Down Expand Up @@ -85,13 +97,23 @@ batchmark = function(design, store_models = FALSE, reg = batchtools::getDefaultR
exports = c(exports, learner_hashes[i])
}

param_values_hashes = tab$param_values_hash
for (i in which(param_values_hashes %nin% exports)) {
batchtools::batchExport(export = set_names(list(tab$param_values[[i]]), param_values_hashes[i]), reg = reg)
exports = c(exports, param_values_hashes[i])
}

prob_design = data.table(
task_hash = task_hash, task_id = task$id,
resampling_hash = resampling_hash, resampling_id = resampling$id
task_hash = task_hash,
task_id = task$id,
resampling_hash = resampling_hash,
resampling_id = resampling$id
)

algo_design = data.table(
learner_hash = learner_hashes, learner_id = map_chr(tab$learner, "id"),
learner_hash = learner_hashes,
learner_id = map_chr(tab$learner, "id"),
param_values_hash = param_values_hashes,
store_models = store_models
)

Expand Down
3 changes: 1 addition & 2 deletions R/reduceResultsBatchmark.R
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
#' @title Collect Results from batchmark
#'
#' @description
#' Collect the results from jobs defined via [batchmark()] and combine them into
#' a [mlr3::BenchmarkResult].
#' Collect the results from jobs defined via [batchmark()] and combine them into a [mlr3::BenchmarkResult].
#'
#' Note that `ids` defaults to finished jobs (as reported by [batchtools::findDone()]).
#' If a job threw an error, is expired or is still running, it will be ignored with this default.
Expand Down
5 changes: 4 additions & 1 deletion R/worker.R
Original file line number Diff line number Diff line change
@@ -1,7 +1,10 @@
run_learner = function(job, data, learner_hash, store_models, ...) {
run_learner = function(job, data, learner_hash, param_values_hash, store_models, ...) {
workhorse = utils::getFromNamespace("workhorse", ns = asNamespace("mlr3"))
resampling = get(job$prob.pars$resampling_hash, envir = .GlobalEnv)
learner = get(learner_hash, envir = .GlobalEnv)
param_values = get(param_values_hash, envir = .GlobalEnv)

if (!is.null(param_values)) learner$param_set$set_values(.values = param_values)

workhorse(
iteration = job$repl,
Expand Down
3 changes: 1 addition & 2 deletions man/reduceResultsBatchmark.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

29 changes: 29 additions & 0 deletions tests/testthat/test_batchmark.R
Original file line number Diff line number Diff line change
Expand Up @@ -97,3 +97,32 @@ test_that("marshaling", {
expect_true(bmr_marshaled$resample_result(1)$learners[[1]]$marshaled)
expect_false(bmr_unmarshaled$resample_result(1)$learners[[1]]$marshaled)
})

test_that("adding parameter values works", {
tasks = tsks(c("iris", "spam"))
resamplings = list(rsmp("cv", folds = 3)$instantiate(tasks[[1]]))
learners = lrns("classif.debug")

design = data.table(
task = tasks,
learner = learners,
resampling = resamplings,
param_values = list(list(list(x = 1), list(x = 0.5))))

reg = batchtools::makeExperimentRegistry(NA, make.default = FALSE)

ids = batchmark(design, reg = reg)
expect_data_table(ids, ncol = 1L, nrows = 12L)
ids = batchtools::submitJobs(reg = reg)
batchtools::waitForJobs(reg = reg)
expect_data_table(ids, nrows = 12)

logs = batchtools::getErrorMessages(reg = reg)
expect_data_table(logs, nrows = 0L)
results = reduceResultsBatchmark(reg = reg)
expect_is(results, "BenchmarkResult")
expect_benchmark_result(results)
expect_data_table(as.data.table(results), nrow = 12L)
expect_equal(results$learners$learner[[1]]$param_set$values$x, 1)
expect_equal(results$learners$learner[[2]]$param_set$values$x, 0.5)
})
Loading