Skip to content

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
mkuchnik committed Feb 20, 2019
0 parents commit a82190c
Show file tree
Hide file tree
Showing 106 changed files with 21,779 additions and 0 deletions.
27 changes: 27 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
*.hdf5
*.npz
*.npy
*.json
*.xlsx
venv
data
norb_data
/*.png
.ipynb_checkpoints
TF_NN_Logs
output
/*.pdf
/*.csv
/*.pkl
/*.tex
cache
LOO_cache
saved_models
octave-workspace
dpp.tgz
train_log
decompose_kernel.m
elem_sympoly.m
genmult.m
sample_dpp.m
sample_k.m
2 changes: 2 additions & 0 deletions Docker/docker_build.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
#!/bin/bash
docker build -t mkuchnik/iclr19_aug .
2 changes: 2 additions & 0 deletions Docker/docker_build_gpu.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
#!/bin/bash
docker build -t mkuchnik/iclr19_aug:gpu -f Dockerfile.gpu .
5 changes: 5 additions & 0 deletions Docker/docker_run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
#!/bin/bash
docker run -it --rm -p 8888:8888 \
-v $(pwd):/code \
mkuchnik/iclr19_aug \
"/bin/bash"
5 changes: 5 additions & 0 deletions Docker/docker_run_gpu.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
#!/bin/bash
nvidia-docker run --runtime=nvidia -it --rm -p 8888:8888 \
-v $(pwd):/code \
mkuchnik/iclr19_aug:gpu \
"/bin/bash"
14 changes: 14 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
FROM tensorflow/tensorflow:1.12.0-py3

LABEL maintainer="Michael Kuchnik <michaelkuchnik@gmail.com>"

RUN mkdir $HOME/code
WORKDIR $HOME/code
COPY requirements.txt $HOME/code/requirements.txt
RUN pip3 install -r requirements.txt
RUN apt-get update && apt-get install -y \
libsm6 \
libxext6 \
octave \
wget \
&& rm -rf /var/lib/apt/lists/*
14 changes: 14 additions & 0 deletions Dockerfile.gpu
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
FROM tensorflow/tensorflow:1.12.0-gpu-py3

LABEL maintainer="Michael Kuchnik <michaelkuchnik@gmail.com>"

RUN mkdir $HOME/code
WORKDIR $HOME/code
COPY requirements-gpu.txt $HOME/code/requirements-gpu.txt
RUN pip3 install -r requirements-gpu.txt
RUN apt-get update && apt-get install -y \
libsm6 \
libxext6 \
octave \
wget \
&& rm -rf /var/lib/apt/lists/*
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2019 Michael Kuchnik and Virginia Smith

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
90 changes: 90 additions & 0 deletions LOO_experiments.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import dataset_loaders
import augmentations
import experiments
import experiments_util


def main():
rounds = 5
n_aug_sample_points = [1, 10, 50, 100, 250, 500, 750, 1000]
n_train = 1000
n_jobs = 1
cv = 1
use_GPU = True
batch_size = 512
CNN_extractor_max_iter = 40
use_loss = False

# Can use multiple valus of C for cross-validation
# logistic_reg__Cs = [[10], [100], [1000], [1e6]]
logistic_reg__Cs = [[10]]
classes_datasets = [
((3, 8), dataset_loaders.Dataset.MNIST),
# ((0, 1), dataset_loaders.Dataset.CIFAR10),
]
selected_augmentations = [
(augmentations.Image_Transformation.translate, {"mag_aug": 2}),
(augmentations.Image_Transformation.rotate, {"mag_aug": 30,
"n_rotations": 15}),
(augmentations.Image_Transformation.crop,
{"mag_augs": [1, 2, 3, 4, 5, 6]}),
]
experiment_configs = [
("baseline", False, False),
("random_proportional", False, False),
("random_proportional", False, True),
("random_proportional", True, False),
("random_proportional", True, True),
("random_inverse_proportional", False, False),
# ("random_inverse_proportional", True, False),
# ("random_softmax_proportional", False, False),
# ("random_softmax_proportional", False, True),
# ("random_softmax_proportional", True, False),
# ("random_softmax_proportional", True, True),
# ("random_inverse_softmax_proportional", False, False),
# ("random_inverse_softmax_proportional", True, False),
("deterministic_proportional", False, False),
("deterministic_proportional", False, True),
("deterministic_proportional", True, False),
("deterministic_proportional", True, True),
("deterministic_inverse_proportional", False, False),
("deterministic_inverse_proportional", True, False),
]
for logistic_reg__C in logistic_reg__Cs:
for classes, dataset in classes_datasets:
for aug_transformation, aug_kw_args in selected_augmentations:
dataset_class_str = experiments_util.classes_to_class_str(
classes
)
print("Class types: {}".format(dataset_class_str))
reg_str = "-".join(list(map(str, logistic_reg__C)))
results_filename = "aug_results_{}_{}_{}_{}{}".format(
dataset.name,
dataset_class_str,
aug_transformation.name,
reg_str,
"_loss" if use_loss else "",
)

experiments.run_test(
classes,
rounds,
n_aug_sample_points,
n_train,
n_jobs,
cv,
use_GPU,
batch_size,
dataset,
aug_transformation,
aug_kw_args,
logistic_reg__C,
CNN_extractor_max_iter,
use_loss,
experiment_configs,
results_filename,
)


if __name__ == "__main__":
main()
99 changes: 99 additions & 0 deletions LOO_experiments_cifar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
import augmentations
import dataset_loaders
import experiments_util

from pretrained_experiments import run_test


def main():
rounds = 5
n_aug_sample_points = [1, 10, 50, 100, 250, 500, 750, 1000]
n_train = 1000
n_jobs = 1
cv = 1
use_GPU = True
batch_size = 128
CNN_extractor_max_iter = 40
use_loss = False

# Can use multiple valus of C for cross-validation
logistic_reg__Cs = [[10]]
classes_datasets = [
((0, 1), dataset_loaders.Dataset.CIFAR10),
]
selected_augmentations = [
(augmentations.Image_Transformation.translate, {"mag_aug": 3}),
(augmentations.Image_Transformation.rotate, {"mag_aug": 5,
"n_rotations": 4}),
(augmentations.Image_Transformation.crop, {"mag_augs": [2]}),
]
experiment_configs = [
("baseline", False, False),
("random_proportional", False, False),
("random_proportional", False, True),
("random_proportional", True, False),
("random_proportional", True, True),
("random_inverse_proportional", False, False),
# ("random_inverse_proportional", True, False),
# ("random_softmax_proportional", False, False),
# ("random_softmax_proportional", False, True),
# ("random_softmax_proportional", True, False),
# ("random_softmax_proportional", True, True),
# ("random_inverse_softmax_proportional", False, False),
# ("random_inverse_softmax_proportional", True, False),
("deterministic_proportional", False, False),
("deterministic_proportional", False, True),
("deterministic_proportional", True, False),
("deterministic_proportional", True, True),
("deterministic_inverse_proportional", False, False),
("deterministic_inverse_proportional", True, False),
]
for logistic_reg__C in logistic_reg__Cs:
for classes, dataset in classes_datasets:
for aug_transformation, aug_kw_args in selected_augmentations:
dataset_class_str = experiments_util.classes_to_class_str(
classes
)
print("Class types: {}".format(dataset_class_str))
reg_str = "-".join(list(map(str, logistic_reg__C)))
results_filename = "aug_results_{}_{}_{}_{}{}".format(
dataset.name,
dataset_class_str,
aug_transformation.name,
reg_str,
"_loss" if use_loss else "",
)
if dataset == dataset_loaders.Dataset.CIFAR10:
model_filename = "models/cifar10_ResNet56v2_model.h5"
elif dataset == dataset_loaders.Dataset.NORB:
if (aug_transformation ==
augmentations.Image_Transformation.translate):
model_filename = "models/norb_small_ResNet56v2_model_translate.h5"
else:
model_filename = \
"models/norb_small_ResNet56v2_model_rotate_crop.h5"
else:
raise RuntimeError("Unknown model for configuration")

run_test(classes,
rounds,
n_aug_sample_points,
n_train,
n_jobs,
cv,
use_GPU,
batch_size,
dataset,
aug_transformation,
aug_kw_args,
logistic_reg__C,
CNN_extractor_max_iter,
use_loss,
experiment_configs,
results_filename,
model_filename,
)


if __name__ == "__main__":
main()
Loading

0 comments on commit a82190c

Please sign in to comment.