Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix source reassignment #1733

Merged
merged 3 commits into from
Nov 12, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 23 additions & 15 deletions tracking/val.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,13 +122,15 @@ def get_input():
return input_with_timeout(f"{path_type} {path} already exists. Overwrite? [y/N]: ")


def generate_dets_embs(args: argparse.Namespace, y: Path) -> None:
def generate_dets_embs(args: argparse.Namespace, y: Path, source: Path) -> None:
"""
Generates detections and embeddings for the specified YOLO model and arguments.
Generates detections and embeddings for the specified
arguments, YOLO model and source.

Args:
args (Namespace): Parsed command line arguments.
y (Path): Path to the YOLO model file.
source (Path): Path to the source directory.
"""
WEIGHTS.mkdir(parents=True, exist_ok=True)

Expand All @@ -137,7 +139,7 @@ def generate_dets_embs(args: argparse.Namespace, y: Path) -> None:
yolo = YOLO(y if any(yolo in str(args.yolo_model) for yolo in ul_models) else 'yolov8n.pt')

results = yolo(
source=args.source,
source=source,
conf=args.conf,
iou=args.iou,
agnostic_nms=args.agnostic_nms,
Expand All @@ -161,7 +163,7 @@ def generate_dets_embs(args: argparse.Namespace, y: Path) -> None:
for r in args.reid_model:
model = ReidAutoBackend(weights=args.reid_model, device=yolo.predictor.device, half=args.half).model
reids.append(model)
embs_path = args.project / 'dets_n_embs' / y.stem / 'embs' / r.stem / (Path(args.source).parent.name + '.txt')
embs_path = args.project / 'dets_n_embs' / y.stem / 'embs' / r.stem / (source.parent.name + '.txt')
embs_path.parent.mkdir(parents=True, exist_ok=True)
embs_path.touch(exist_ok=True)

Expand All @@ -170,15 +172,15 @@ def generate_dets_embs(args: argparse.Namespace, y: Path) -> None:

yolo.predictor.custom_args = args

dets_path = args.project / 'dets_n_embs' / y.stem / 'dets' / (Path(args.source).parent.name + '.txt')
dets_path = args.project / 'dets_n_embs' / y.stem / 'dets' / (source.parent.name + '.txt')
dets_path.parent.mkdir(parents=True, exist_ok=True)
dets_path.touch(exist_ok=True)

if os.path.getsize(dets_path) > 0:
open(dets_path, 'w').close()

with open(str(dets_path), 'ab+') as f:
np.savetxt(f, [], fmt='%f', header=str(args.source))
np.savetxt(f, [], fmt='%f', header=str(source))

for frame_idx, r in enumerate(tqdm(results, desc="Frames")):
nr_dets = len(r.boxes)
Expand All @@ -205,7 +207,7 @@ def generate_dets_embs(args: argparse.Namespace, y: Path) -> None:

for reid, reid_model_name in zip(reids, args.reid_model):
embs = reid.get_features(dets[:, 1:5], img)
embs_path = args.project / "dets_n_embs" / y.stem / 'embs' / reid_model_name.stem / (Path(args.source).parent.name + '.txt')
embs_path = args.project / "dets_n_embs" / y.stem / 'embs' / reid_model_name.stem / (source.parent.name + '.txt')
with open(str(embs_path), 'ab+') as f:
np.savetxt(f, embs, fmt='%f')

Expand All @@ -230,18 +232,18 @@ def generate_mot_results(args: argparse.Namespace, config_dict: dict = None) ->
)

with open(args.dets_file_path, 'r') as file:
args.source = file.readline().strip().replace("# ", "")
source = Path(file.readline().strip().replace("# ", ""))

LOGGER.info(f"\nStarting tracking on:\n\t{args.source}\nwith preloaded dets\n\t({args.dets_file_path.relative_to(ROOT)})\nand embs\n\t({args.embs_file_path.relative_to(ROOT)})\nusing\n\t{args.tracking_method}")
LOGGER.info(f"\nStarting tracking on:\n\t{source}\nwith preloaded dets\n\t({args.dets_file_path.relative_to(ROOT)})\nand embs\n\t({args.embs_file_path.relative_to(ROOT)})\nusing\n\t{args.tracking_method}")

dets = np.loadtxt(args.dets_file_path, skiprows=1)
embs = np.loadtxt(args.embs_file_path)

dets_n_embs = np.concatenate([dets, embs], axis=1)

dataset = LoadImagesAndVideos(args.source)
dataset = LoadImagesAndVideos(source)

txt_path = args.exp_folder_path / (Path(args.source).parent.name + '.txt')
txt_path = args.exp_folder_path / (source.parent.name + '.txt')
all_mot_results = []

for frame_idx, d in enumerate(tqdm(dataset, desc="Frames")):
Expand Down Expand Up @@ -348,8 +350,7 @@ def run_generate_dets_embs(opt: argparse.Namespace) -> None:
LOGGER.info(f'Skipping generation for {mot_folder_path} as they already exist.')
continue
LOGGER.info(f'Generating detections and embeddings for data under {mot_folder_path} [{i + 1}/{len(mot_folder_paths)} seqs]')
opt.source = mot_folder_path / 'img1'
generate_dets_embs(opt, y)
generate_dets_embs(opt, y, source=mot_folder_path / 'img1')


def run_generate_mot_results(opt: argparse.Namespace, evolve_config: dict = None) -> None:
Expand All @@ -364,8 +365,15 @@ def run_generate_mot_results(opt: argparse.Namespace, evolve_config: dict = None
exp_folder_path = opt.project / 'mot' / (str(y.stem) + "_" + str(opt.reid_model[0].stem) + "_" + str(opt.tracking_method))
exp_folder_path = increment_path(path=exp_folder_path, sep="_", exist_ok=False)
opt.exp_folder_path = exp_folder_path
dets_file_paths = [item for item in (opt.project / "dets_n_embs" / y.stem / 'dets').glob('*.txt') if not item.name.startswith('.')]
embs_file_paths = [item for item in (opt.project / "dets_n_embs" / y.stem / 'embs' / opt.reid_model[0].stem).glob('*.txt') if not item.name.startswith('.')]

mot_folder_names = [item.stem for item in Path(opt.source).iterdir()]
dets_file_paths = [item for item in (opt.project / "dets_n_embs" / y.stem / 'dets').glob('*.txt')
if not item.name.startswith('.')
and item.stem in mot_folder_names]
embs_file_paths = [item for item in (opt.project / "dets_n_embs" / y.stem / 'embs' / opt.reid_model[0].stem).glob('*.txt')
if not item.name.startswith('.')
and item.stem in mot_folder_names]

for d, e in zip(dets_file_paths, embs_file_paths):
mot_result_path = exp_folder_path / (d.stem + '.txt')
if mot_result_path.exists():
Expand Down
Loading