UralicNLP can produce morphological analyses, generate morphological forms, lemmatize words and give lexical information about words in Uralic and other languages. The languages we support include the following languages: Finnish, Russian, German, English, Norwegian, Swedish, Arabic, Ingrian, Meadow & Eastern Mari, Votic, Olonets-Karelian, Erzya, Moksha, Hill Mari, Udmurt, Tundra Nenets, Komi-Permyak, North Sami, South Sami and Skolt Sami.
See the list of supported languages
🐍 Check out UralicNLP for Python
UralicNLP is available through Maven, all you need to do is to add the following to your pom.xml
:
<dependencies>
<dependency>
<groupId>com.rootroo</groupId>
<artifactId>uralicnlp</artifactId>
<version>1.0</version>
</dependency>
</dependencies>
You can also download the JAR file from the GitHub releases page, but then you may need to download UralicNLP's dependencies by hand.
If you want to use the Constraint Grammar features (com.rootroo.uralicnlp.Cg3), you will also need to install VISL CG-3.
In order to use any of the language specific features, you will need to download the models for each language by passing the ISO code of the language to the download method:
import com.rootroo.uralicnlp.UralicApi
UralicApi api = new UralicApi();
api.download("fin")
The models will be downloaded to .uralicnlp folder in your home directory.
You can tokenize a text into sentences and words. This method supports abreviations in languages that have appeared in a Universal Dependencies Treebank.
import com.rootroo.uralicnlp.Tokenizer
Tokenizer tokenizer = new Tokenizer();
String sentence = "Mr. Burns talks with Dr. Hibbert. But why?";
System.out.println(tokenizer.tokenize(sentence));
>>[[Mr., Burns, talks, with, Dr., Hibbert, .], [But, why, ?]]
The output is a List of tokenized sentences that are Lists of strings, where each string represents a tokenized word.
It is also possible to tokenize text only on a sentence level:
import com.rootroo.uralicnlp.Tokenizer
Tokenizer tokenizer = new Tokenizer();
String sentence = "Mr. Burns talks with Dr. Hibbert. But why?";
System.out.println(tokenizer.sentences(sentence));
>>[Mr. Burns talks with Dr. Hibbert., But why?]
Or on a word level:
import com.rootroo.uralicnlp.Tokenizer
Tokenizer tokenizer = new Tokenizer();
String sentence = "Mr. Burns talks with Dr. Hibbert. But why?";
System.out.println(tokenizer.words(sentence));
>>[Mr., Burns, talks, with, Dr., Hibbert, ., But, why, ?]
To lemmatize a single word, use the lemmatize method. This will produce a list of all the possible lemmas.
import com.rootroo.uralicnlp.UralicApi
UralicApi api = new UralicApi();
System.out.println(api.lemmatize("voin", "fin"));
>> [voi, vuo, voida]
To mark word boundaries in compound words, pass an additional true to the lemmatize method:
import com.rootroo.uralicnlp.UralicApi
UralicApi api = new UralicApi();
System.out.println(api.lemmatize("luutapiiri", "fin", true)));
>> [luu|tapiiri, luuta|piiri]
To analyze the morpholgy including the part-of-speech of a given word, use the analyze method. This will return all the possible morphological interpretations for the input word:
import com.rootroo.uralicnlp.UralicApi
UralicApi api = new UralicApi();
HashMap<String, Float> results = api.analyze("voin", "fin");
for(String s : results.keySet()){
System.out.println(s);
}
>>voi+N+Sg+Gen
>>vuo+N+Pl+Ins
>>voida+V+Act+Ind+Prt+Sg1
>>voi+N+Pl+Ins
>>voida+V+Act+Ind+Prs+Sg1
The result is a HashMap where the keys are morphological readings and the values are the weights (NB most of the models do not have weights).
You can also inflect words by using the generate method:
import com.rootroo.uralicnlp.UralicApi
UralicApi api = new UralicApi();
HashMap<String, Float> results = api.generate("voida+V+Act+Ind+Prt+Sg1", "fin");
for(String s : results.keySet()){
System.out.println(s);
}
>>voin
The output is a similar HashMap as in the case of analyze.
The UralicNLP method analyze produces a list of all the possible morphological readings of a word. It is more practical to parse full sentences because then the context can be used to disambiguate the actual morphological reading. Note: You will need to install install VISL CG-3 and ensure it is in the PATH environment variable in your IDE.
import com.rootroo.uralicnlp.Cg3
import com.rootroo.uralicnlp.Tokenizer
import com.rootroo.uralicnlp.Cg3Word
Cg3 cg = new Cg3("fin");
Tokenizer tokenizer = new Tokenizer();
String sentence = "Kissa voi nauraa";
List<String> tokens = tokenizer.words(sentence);
System.out.println(cg.disambiguate(tokens));
>>[[<Kissa - N, <fin>, Prop, Sem/Geo, Sg, Nom, <W:0.000000>, @SUBJ>>, <kissa - N, <fin>, Sg, Nom, <W:0.000000>, @SUBJ>>, <Kissa - N, <fin>, Prop, Sg, Nom, <W:0.000000>, @SUBJ>>], [<voida - V, <fin>, Act, Ind, Prs, Sg3, <W:0.000000>, @+FAUXV>], [<nauraa - V, <fin>, Act, InfA, Sg, Lat, <W:0.000000>, @-FMAINV>]]
The result is a List of Cg3Word Lists. Because the disambiguator only narrows down the possible morphological readings, each word may still have more than one reading left. You can iterate over the results like so:
import com.rootroo.uralicnlp.Cg3
import com.rootroo.uralicnlp.Tokenizer
import com.rootroo.uralicnlp.Cg3Word
Cg3 cg = new Cg3("fin");
Tokenizer tokenizer = new Tokenizer();
String sentence = "Kissa voi nauraa";
List<String> tokens = tokenizer.words(sentence);
ArrayList<ArrayList<Cg3Word>> disambiguatedSentence = cg.disambiguate(tokens);
for(ArrayList<Cg3Word> wordReadings : disambiguatedSentence){
for(Cg3Word wordReading :wordReadings){
System.out.println("Form: " + wordReading.form + " lemma: " + wordReading.lemma + " morphology: " + String.join(", ", wordReading.morphology));
}
System.out.println("---");
}
>>Form: Kissa lemma: Kissa morphology: N, <fin>, Prop, Sem/Geo, Sg, Nom, <W:0.000000>, @SUBJ>
>>Form: Kissa lemma: kissa morphology: N, <fin>, Sg, Nom, <W:0.000000>, @SUBJ>
>>Form: Kissa lemma: Kissa morphology: N, <fin>, Prop, Sg, Nom, <W:0.000000>, @SUBJ>
>>---
>>Form: voi lemma: voida morphology: V, <fin>, Act, Ind, Prs, Sg3, <W:0.000000>, @+FAUXV
>>---
>>Form: nauraa lemma: nauraa morphology: V, <fin>, Act, InfA, Sg, Lat, <W:0.000000>, @-FMAINV
>>---
You can load a CoNLL-U formatted file and parse it by running:
import com.rootroo.uralicnlp.UDSentence
import com.rootroo.uralicnlp.UDCollection
import com.rootroo.uralicnlp.UDNode
FileInputStream fis = new FileInputStream("sms_giellagas-ud-test.conllu");
InputStreamReader isr = new InputStreamReader(fis, StandardCharsets.UTF_8);
BufferedReader reader = new BufferedReader(isr);
UDCollection udCollection = new UDCollection(reader);
for(UDSentence sentence : udCollection){
for(UDNode word : sentence){
System.out.println(word.lemma + " " + word.pos + " " + word.deprelName());
}
System.out.println("---");
}
>>son PRON nsubj
>>âʹtte ADV advmod:tmod
>>pâi ADV advmod
>>... PUNCT punct
>>---
>>tõt PRON nsubj
>>vuejjled VERB root
>>. PUNCT punct
>>---
UDCollection can be initialized either with a BufferedReader or String that contains CoNLL-U formatted data. The UDCollection consists of UDSentence objects which contain UDNode objects. Each UDNode corresponds to a word of a Universal Dependencies sentence and it has information such as lemma and part of speech. More about Universal Dependencies tags.
To parse an individual Universal Dependencies (CoNLL-U) formatted sentence, you can run the following:
import com.rootroo.uralicnlp.UDSentence
import com.rootroo.uralicnlp.UDTools
import com.rootroo.uralicnlp.UDNode
String conl = "# text = Toinen palkinto\n1\tToinen\ttoinen\tADJ\tNum\tCase=Nom\t2\tnummod\t_\t_\n2\tpalkinto\tpalkinto\tNOUN\tN\tCase=Nom\t0\troot\t_\t_";
UDSentence sentence = UDTools.parseSentence(conl);
for(UDNode word : sentence){
System.out.println(word.lemma + " " + word.pos + " " + word.deprelName());
}
>>toinen ADJ nummod
>>palkinto NOUN root
If you use UralicNLP in an academic publication, please cite it as follows:
Hämäläinen, Mika. (2019). UralicNLP: An NLP Library for Uralic Languages. Journal of open source software, 4(37), [1345]. https://doi.org/10.21105/joss.01345
@article{uralicnlp_2019,
title={{UralicNLP}: An {NLP} Library for {U}ralic Languages},
DOI={10.21105/joss.01345},
journal={Journal of Open Source Software},
author={Mika Hämäläinen},
year={2019},
volume={4},
number={37},
pages={1345}
}
The FST and CG tools and dictionaries come mostly from the GiellaLT repositories and Apertium.