-
Notifications
You must be signed in to change notification settings - Fork 3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Quant Tool] Prevent int32 quantized bias from clipping by adjusting the weight's scale #22020
Merged
adrianlizarraga
merged 17 commits into
main
from
adrianl/quant-adjust-bias-out-of-range-scale
Nov 6, 2024
Merged
[Quant Tool] Prevent int32 quantized bias from clipping by adjusting the weight's scale #22020
adrianlizarraga
merged 17 commits into
main
from
adrianl/quant-adjust-bias-out-of-range-scale
Nov 6, 2024
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…set to 1.0 when trying to compare magnitudes
adrianlizarraga
changed the title
Prevent int32 quantized bias from clipping by adjusting the weight's scale
[Quant Tool] Prevent int32 quantized bias from clipping by adjusting the weight's scale
Oct 15, 2024
adrianlizarraga
added
quantization
issues related to quantization
ep:QNN
issues related to QNN exeution provider
labels
Oct 15, 2024
Found an oversight. Converting back to draft. |
Ready for review |
adrianlizarraga
commented
Oct 31, 2024
xadupre
approved these changes
Nov 4, 2024
sophies927
added
triage:approved
Approved for cherrypicks for release
release:1.20.1
labels
Nov 5, 2024
adrianlizarraga
deleted the
adrianl/quant-adjust-bias-out-of-range-scale
branch
November 6, 2024 18:44
adrianlizarraga
added a commit
that referenced
this pull request
Nov 6, 2024
…the weight's scale (#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
yf711
pushed a commit
that referenced
this pull request
Nov 11, 2024
…the weight's scale (#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
ishwar-raut1
pushed a commit
to ishwar-raut1/onnxruntime
that referenced
this pull request
Nov 19, 2024
…the weight's scale (microsoft#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
guschmue
pushed a commit
that referenced
this pull request
Dec 2, 2024
…the weight's scale (#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
ankitm3k
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Dec 11, 2024
…the weight's scale (microsoft#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
ankitm3k
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Dec 11, 2024
…the weight's scale (microsoft#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
ankitm3k
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Dec 11, 2024
…the weight's scale (microsoft#22020) ### Description Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an `int32` when quantized, which significantly decreases accuracy. Credit to @yihonglyu for finding out about this issue and the fix. ### Motivation and Context Consider the following Convolution with very small weights and a constant bias input of `[5, -4.5]`. ![image](https://github.com/user-attachments/assets/4bde2bd9-892f-4ae9-887b-61a6668779a1) The QDQ quantizer first computes the following quantization scale for `input_0` and `weight`: - `input_0`: scale=0.5 - `weight`: scale=7.843e-10 **[really small]** The QDQ quantizer then computes the bias input's scale as follows: ``` bias_scale = input_0_scale * weight_0_scale = 0.5 * 7.843e-10 = 3.9215686274509805e-11 ``` This `bias_scale` is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with this `bias_scale`: ``` bias_quant = round(bias_f32 / bias_scale) = round([5.0/bias_scale, -4.5/bias_scale]) = [127500000000, -114750000000] ``` These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate. #### New approach This PR increases the `weight_0_scale` by the necessary amount to ensure that `bias_scale` (which equals `weight_0_scale * input_0_scale`) is appropriate for the int32 quantization type. The smallest valid bias scale is given by the normal scale formula: `bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)` Then, we compute the candidate bias scale: `bias_scale_candidate = input_0_scale * weight_0_scale` If the candidate scale is smaller than the smallest valid scale, we increase the `weight_0_scale` by the necessary ratio: ```python if bias_scale_candidate < bias_smallest_valid_scale: ratio = bias_smallest_valid_scale / bias_scale_candidate weight_0_scale = ratio * weight_0_scale ``` Then, we recompute the final bias scale: ```python bias_scale = input_0_scale * weight_0_scale ``` #### Impact on accuracy Here's the above model's quantized output compared to the f32 (ground-truth) output. - Before PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **0.075** - SNR: 0.1369 (higher is better) - After PR: - f32 model output[0]: **5.0f** - qdq model output[0]: **4.992** - SNR: 55.656 (higher is better)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
cherry-picked
Cherry-picked for a cherrypicks branch
ep:QNN
issues related to QNN exeution provider
quantization
issues related to quantization
release:1.20.1
triage:approved
Approved for cherrypicks for release
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Description
Fixes scenario in which a bias input quantized to int32 has a scale that is too small. A bias with a scale that is smaller than a certain threshold will overflow the range of an
int32
when quantized, which significantly decreases accuracy.Credit to @yihonglyu for finding out about this issue and the fix.
Motivation and Context
Consider the following Convolution with very small weights and a constant bias input of
[5, -4.5]
.The QDQ quantizer first computes the following quantization scale for
input_0
andweight
:input_0
: scale=0.5weight
: scale=7.843e-10 [really small]The QDQ quantizer then computes the bias input's scale as follows:
This
bias_scale
is too small. Before this PR, the QDQ quantizer would quantize the f32 bias with thisbias_scale
:These quantized bias values exceed the range of int32, and so are clipped to [int32.min(), int32.max()], which is very inaccurate.
New approach
This PR increases the
weight_0_scale
by the necessary amount to ensure thatbias_scale
(which equalsweight_0_scale * input_0_scale
) is appropriate for the int32 quantization type.The smallest valid bias scale is given by the normal scale formula:
bias_smallest_valid_scale = (bias_f32_max - bias_f32_min) / (int32_max - int32_min)
Then, we compute the candidate bias scale:
bias_scale_candidate = input_0_scale * weight_0_scale
If the candidate scale is smaller than the smallest valid scale, we increase the
weight_0_scale
by the necessary ratio:Then, we recompute the final bias scale:
Impact on accuracy
Here's the above model's quantized output compared to the f32 (ground-truth) output.