Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

update tf pruner example #3708

Merged
merged 1 commit into from
Jun 2, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 42 additions & 15 deletions examples/model_compress/pruning/naive_prune_tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,9 @@

import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import (Conv2D, Dense, Dropout, Flatten, MaxPool2D)
from tensorflow.keras.layers import (Conv2D, Dense, Dropout, Flatten, MaxPool2D, BatchNormalization)

from nni.algorithms.compression.tensorflow.pruning import LevelPruner
from nni.algorithms.compression.tensorflow.pruning import LevelPruner, SlimPruner

class LeNet(Model):
"""
Expand All @@ -34,8 +34,10 @@ def __init__(self, conv_size=3, hidden_size=32, dropout_rate=0.5):
super().__init__()
self.conv1 = Conv2D(filters=32, kernel_size=conv_size, activation='relu')
self.pool1 = MaxPool2D(pool_size=2)
self.bn1 = BatchNormalization()
self.conv2 = Conv2D(filters=64, kernel_size=conv_size, activation='relu')
self.pool2 = MaxPool2D(pool_size=2)
self.bn2 = BatchNormalization()
self.flatten = Flatten()
self.fc1 = Dense(units=hidden_size, activation='relu')
self.dropout = Dropout(rate=dropout_rate)
Expand All @@ -45,8 +47,10 @@ def call(self, x):
"""Override ``Model.call`` to build LeNet-5 model."""
x = self.conv1(x)
x = self.pool1(x)
x = self.bn1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.bn2(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.dropout(x)
Expand Down Expand Up @@ -85,12 +89,29 @@ def main(args):
model = LeNet()

print('start training')

optimizer = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9, decay=1e-4)
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)

if args.pruner_name == 'slim':
def slim_loss(y_true, y_pred):
loss_1 = tf.keras.losses.sparse_categorical_crossentropy(y_true=y_true, y_pred=y_pred)
weight_list = []
for layer in [model.bn1, model.bn2]:
weight_list.append([w for w in layer.weights if '/gamma:' in w.name][0].read_value())
loss_2 = 0.0001 * tf.reduce_sum([tf.reduce_sum(tf.abs(w)) for w in weight_list])
return loss_1 + loss_2
model.compile(
optimizer=optimizer,
loss=slim_loss,
metrics=['accuracy']
)
else:
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)

model.fit(
train_set[0],
train_set[1],
Expand All @@ -103,13 +124,19 @@ def main(args):
optimizer_finetune = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9, decay=1e-4)

# create_pruner
prune_config = [{
'sparsity': args.sparsity,
'op_types': ['default'],
}]

pruner = LevelPruner(model, prune_config)
# pruner = create_pruner(model, args.pruner_name)
if args.pruner_name == 'level':
prune_config = [{
'sparsity': args.sparsity,
'op_types': ['default'],
}]
pruner = LevelPruner(model, prune_config)
elif args.pruner_name == 'slim':
prune_config = [{
'sparsity': args.sparsity,
'op_types': ['BatchNormalization'],
}]
pruner = SlimPruner(model, prune_config)

model = pruner.compress()

model.compile(
Expand All @@ -131,7 +158,7 @@ def main(args):

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pruner_name', type=str, default='level')
parser.add_argument('--pruner_name', type=str, default='level', choices=['level', 'slim'])
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--pretrain_epochs', type=int, default=10)
parser.add_argument('--prune_epochs', type=int, default=10)
Expand Down