Skip to content

Efficient Zero-Knowledge Proofs for LoRA Verification

License

Notifications You must be signed in to change notification settings

meta-introspector/ZKLoRA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bagel Logo

Twitter Follow Substack Follow License

ZKLoRA

Efficient Zero-Knowledge Proofs for LoRA Verification


ZKLoRA: Efficient Zero-Knowledge Proofs for LoRA Verification

Low-Rank Adaptation (LoRA) is a widely adopted method for customizing large-scale language models. In distributed, untrusted training environments, an open source base model user may want to use LoRA weights created by an external contributor, leading to two requirements:

  1. Base Model User Verification: The user must confirm that the LoRA weights are effective when paired with the intended base model.
  2. LoRA Contributor Protection: The contributor must keep their proprietary LoRA weights private until compensation is assured.

To solve this, we created ZKLoRA a zero-knowledge verification protocol that relies on polynomial commitments, succinct proofs, and multi-party inference to verify LoRA–base model compatibility without exposing LoRA weights. With ZKLoRA, verification of LoRA modules takes just 1-2 seconds, even for state-of-the-art language models with tens of billions of parameters.

For detailed information about this research, please refer to our paper.

Quick Usage Instructions

1. LoRA Contributor Side (User A)

First, install ZKLoRA using pip:

pip install zklora

Use src/scripts/lora_contributor_sample_script.py to:

  • Host LoRA submodules
  • Handle inference requests
  • Generate proof artifacts
import argparse
import threading
import time

from zklora import LoRAServer, AServerTCP

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", default="127.0.0.1")
    parser.add_argument("--port_a", type=int, default=30000)
    parser.add_argument("--base_model", default="distilgpt2")
    parser.add_argument("--lora_model_id", default="ng0-k1/distilgpt2-finetuned-es")
    parser.add_argument("--out_dir", default="a-out")
    args = parser.parse_args()

    stop_event = threading.Event()
    server_obj = LoRAServer(args.base_model, args.lora_model_id, args.out_dir)
    t = AServerTCP(args.host, args.port_a, server_obj, stop_event)
    t.start()

    try:
        while True:
            time.sleep(1)
    except KeyboardInterrupt:
        print("[A-Server] stopping.")
    stop_event.set()
    t.join()

if __name__ == "__main__":
    main()

2. Base Model User Side (User B)

Use src/scripts/base_model_user_sample_script.py to:

  • Load and patch the base model
  • Connect to A's submodules
  • Perform inference
  • Trigger proof generation
import argparse

from zklora import BaseModelClient

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--host_a", default="127.0.0.1")
    parser.add_argument("--port_a", type=int, default=30000)
    parser.add_argument("--base_model", default="distilgpt2")
    parser.add_argument("--combine_mode", choices=["replace","add_delta"], default="add_delta")
    args = parser.parse_args()

    client = BaseModelClient(args.base_model, args.host_a, args.port_a, args.combine_mode)
    client.init_and_patch()

    # Run inference => triggers remote LoRA calls on A
    text = "Hello World, this is a LoRA test."
    loss_val = client.forward_loss(text)
    print(f"[B] final loss => {loss_val:.4f}")

    # End inference => A finalizes proofs offline
    client.end_inference()
    print("[B] done. B can now fetch proof files from A and verify them offline.")

if __name__=="__main__":
    main()

3. Proof Verification

Use src/scripts/verify_proofs.py to validate the proof artifacts:

#!/usr/bin/env python3
"""
Verify LoRA proof artifacts in a given directory.

Example usage:
  python verify_proofs.py --proof_dir a-out --verbose
"""

import argparse
from zklora import batch_verify_proofs

def main():
    parser = argparse.ArgumentParser(
        description="Verify LoRA proof artifacts in a given directory."
    )
    parser.add_argument(
        "--proof_dir",
        type=str,
        default="proof_artifacts",
        help="Directory containing proof files (.pf), plus settings, vk, srs."
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        help="Print more details during verification."
    )
    args = parser.parse_args()

    total_verify_time, num_proofs = batch_verify_proofs(
        proof_dir=args.proof_dir,
        verbose=args.verbose
    )
    print(f"Done verifying {num_proofs} proofs. Total time: {total_verify_time:.2f}s")

if __name__ == "__main__":
    main()

Code Structure

For detailed information about the codebase organization and implementation details, see Code Structure.

Summary

✓Trust-Minimized Verification: Zero-knowledge proofs enable secure LoRA validation
✓Rapid Verification: 1-2 second processing per module, even for billion-parameter models
✓Multi-Party Inference: Protected activation exchange between parties
✓Complete Privacy: LoRA weights remain confidential while ensuring compatibility
✓Production Ready: Efficiently scales to handle multiple LoRA modules

Future work includes adding polynomial commitments for base model activations and supporting multi-contributor LoRA scenarios.

Credits

ZKLoRA is built upon these outstanding open source projects:

Project Description
PEFT Parameter-Efficient Fine-Tuning library by Hugging Face
Transformers State-of-the-art Natural Language Processing
dusk-merkle Merkle tree implementation in Rust
BLAKE3 Cryptographic hash function
EZKL Zero-knowledge proof system for neural networks
ONNX Runtime Cross-platform ML model inference

Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

About

Efficient Zero-Knowledge Proofs for LoRA Verification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.4%
  • Rust 5.9%
  • Shell 2.7%