Skip to content

Commit

Permalink
feat: update minor (#27)
Browse files Browse the repository at this point in the history
  • Loading branch information
khwengXU authored Jun 23, 2022
1 parent 3185477 commit e726921
Show file tree
Hide file tree
Showing 8 changed files with 21 additions and 9 deletions.
2 changes: 1 addition & 1 deletion deploy/ONNX/export_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0, 1, 2, 3 or cpu')
args = parser.parse_args()
args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
print(args)
Expand Down
13 changes: 6 additions & 7 deletions yolov6/core/evaler.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,6 @@ def init_model(self, model, weights, task):

def init_data(self, dataloader, task):
'''Initialize dataloader.
Returns a dataloader for task val or speed.
'''
self.is_coco = isinstance(self.data.get('val'), str) and 'coco' in self.data['val'] # COCO dataset
Expand Down Expand Up @@ -104,10 +103,10 @@ def predict_model(self, model, dataloader, task):
return pred_results

def eval_model(self, pred_results, model, dataloader, task):
'''Evaluate current model
For task speed, this function only evaluates the speed of model and output inference time.
For task val, this function evalutates the speed and also evaluates mAP by pycocotools, and then
returns inference time and mAP value.
'''Evaluate models
For task speed, this function only evaluates the speed of model and outputs inference time.
For task val, this function evalutates the speed and mAP by pycocotools, and returns
inference time and mAP value.
'''
LOGGER.info(f'\nEvaluating speed.')
self.eval_speed(task)
Expand Down Expand Up @@ -145,7 +144,7 @@ def eval_model(self, pred_results, model, dataloader, task):
return (0.0, 0.0)

def eval_speed(self, task):
'''Evaluate the speed of model.'''
'''Evaluate model inference speed.'''
if task != 'train':
n_samples = self.speed_result[0].item()
pre_time, inf_time, nms_time = 1000 * self.speed_result[1:].cpu().numpy() / n_samples
Expand Down Expand Up @@ -215,7 +214,7 @@ def check_task(task):

@staticmethod
def reload_thres(conf_thres, iou_thres, task):
'''Sets conf and iou thres for task val/speed'''
'''Sets conf and iou threshold for task val/speed'''
if task != 'train':
if task == 'val':
conf_thres = 0.001
Expand Down
5 changes: 4 additions & 1 deletion yolov6/models/effidehead.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,10 @@


class Detect(nn.Module):
'''Efficient Decoupled Head'''
'''Efficient Decoupled Head
With hardware-aware degisn, the decoupled head is optimized with
hybridchannels methods.
'''
def __init__(self, num_classes=80, anchors=1, num_layers=3, inplace=True, head_layers=None): # detection layer
super().__init__()
assert head_layers is not None
Expand Down
4 changes: 4 additions & 0 deletions yolov6/models/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,10 @@


class Model(nn.Module):
'''YOLOv6 model with backbone, neck and head.
The default parts are EfficientRep Backbone, Rep-PAN and
Efficient Decoupled Head.
'''
def __init__(self, config, channels=3, num_classes=None, anchors=None): # model, input channels, number of classes
super().__init__()
# Build network
Expand Down
1 change: 1 addition & 0 deletions yolov6/utils/checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from yolov6.utils.events import LOGGER
from yolov6.utils.torch_utils import fuse_model


def load_state_dict(weights, model, map_location=None):
"""Load weights from checkpoint file, only assign weights those layers' name and shape are match."""
ckpt = torch.load(weights, map_location=map_location)
Expand Down
1 change: 1 addition & 0 deletions yolov6/utils/ema.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import torch
import torch.nn as nn


class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
Expand Down
1 change: 1 addition & 0 deletions yolov6/utils/envs.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import torch.backends.cudnn as cudnn
from yolov6.utils.events import LOGGER


def get_envs():
"""Get PyTorch needed environments from system envirionments."""
local_rank = int(os.getenv('LOCAL_RANK', -1))
Expand Down
3 changes: 3 additions & 0 deletions yolov6/utils/events.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,17 @@
import logging
import shutil


def set_logging(name=None):
rank = int(os.getenv('RANK', -1))
logging.basicConfig(format="%(message)s", level=logging.INFO if (rank in (-1, 0)) else logging.WARNING)
return logging.getLogger(name)


LOGGER = set_logging(__name__)
NCOLS = shutil.get_terminal_size().columns


def load_yaml(file_path):
"""Load data from yaml file."""
if isinstance(file_path, str):
Expand Down

0 comments on commit e726921

Please sign in to comment.