-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b97cba0
commit 2824fcc
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
from __future__ import division | ||
import numpy as np | ||
from scipy.integrate import ode | ||
from scipy.interpolate import interp1d | ||
|
||
c=299792458*100 # cm/s | ||
|
||
def nt(z): # cm^-3 | ||
return 56*(1+z)**3 | ||
|
||
def L0(energy_nu, z, k=1, gamma=2, E_max=1.0e7): | ||
return k*np.power(energy_nu,-gamma)*np.exp(-energy_nu/E_max) | ||
|
||
|
||
def W(z, a=3.4 , b=-0.3 , c1=-3.5 , B=5000 , C=9 , eta=-10): | ||
return ((1+z)**(a*eta)+((1+z)/B)**(b*eta)+((1+z)/C)**(c1*eta))**(1/eta) | ||
|
||
def L(z, energy_nu): | ||
return W(z)*L0(energy_nu, z) | ||
|
||
def H(z, H0=0.678/(9.777752*3.16*1e16), OM=0.308, OL=0.692): # s^-1 | ||
return H0*np.sqrt(OM*(1.+z)**3. + OL) | ||
|
||
|
||
def sigma(energy_nu, g, M, m=1.e-10): # cm^2 | ||
return (g**4/(16*np.pi))*(2*energy_nu*m)/((2*energy_nu*m-M**2)**2+((M**4*g**4)/(16*np.pi**2)))* 0.389379e-27 | ||
|
||
def Adiabatic_Energy_Losses(z, energy_nu, nu_density, lst_energy_nu, lst_nu_density): | ||
index = list(lst_energy_nu).index(energy_nu) | ||
|
||
if index == 0: | ||
diff = (lst_nu_density[index+1]-lst_nu_density[index])/(lst_energy_nu[index+1]-lst_energy_nu[index]) | ||
elif index < len(lst_energy_nu)-1: | ||
diff = (lst_nu_density[index+1]-lst_nu_density[index])/(lst_energy_nu[index+1]-lst_energy_nu[index]) | ||
else: | ||
diff = (lst_nu_density[index]-lst_nu_density[index-1])/(lst_energy_nu[index]-lst_energy_nu[index-1]) | ||
return H(z)*(nu_density + energy_nu*diff) | ||
|
||
def Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10): | ||
return -c*nt(z)*sigma(energy_nu, g, M, m)*nu_density | ||
|
||
def Regeneration(z, energy_nu, lst_energy_nu, lst_nu_density, g, M, m=1.e-10): | ||
regen = 0 | ||
index = list(lst_energy_nu).index(energy_nu) | ||
|
||
for j in range (index, len(lst_energy_nu)-1): | ||
regen += sigma(lst_energy_nu[j], g, M, m)*lst_nu_density[j]*(lst_energy_nu[j+1]-lst_energy_nu[j]) | ||
|
||
regen=c*nt(z)*regen/(energy_nu) | ||
|
||
return regen | ||
|
||
def Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10): | ||
rhs = 0 | ||
|
||
rhs += Adiabatic_Energy_Losses(z, energy_nu, nu_density, lst_energy_nu, lst_nu_density) | ||
rhs += L(z, energy_nu) | ||
rhs += Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10) | ||
rhs += Regeneration(z, energy_nu, lst_energy_nu, lst_nu_density, g, M, m=1.e-10) | ||
|
||
rhs = rhs/(-(1+z)*H(z)) | ||
|
||
return rhs | ||
|
||
def Neutrino_Flux(z_min, z_max, lst_energy_nu, g, M, m=1.e-10): | ||
|
||
def Integrand(z, nu_density, energy_nu, interp_nu_density): | ||
return Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10) | ||
|
||
solver = ode(Integrand, jac=None).set_integrator('dop853', atol=1.e-4, rtol=1.e-4, nsteps=500, max_step=1.e-3, verbosity=1) | ||
|
||
lst_nu_density = [0.0]*len(lst_energy_nu) | ||
|
||
dz = 1.e-1 | ||
|
||
z = z_max | ||
|
||
while (z > z_min): | ||
lst_nu_density_new = np.zeros(lst_energy_nu.size) | ||
interp_nu_density = interp1d(lst_energy_nu, lst_nu_density, kind='linear', bounds_error=False, fill_value='extrapolate') | ||
#print(interp_nu_density(lst_energy_nu)) | ||
for i in range(len(lst_energy_nu)): | ||
|
||
solver.set_initial_value(lst_nu_density[i], z) | ||
solver.set_f_params(lst_energy_nu[i], interp_nu_density) | ||
sol = solver.integrate(solver.t-dz) | ||
|
||
lst_nu_density_new[i]=sol | ||
#print(lst_nu_density_new) | ||
|
||
lst_nu_density = [x for x in lst_nu_density_new] | ||
|
||
#print(lst_nu_density) | ||
z = z-dz | ||
|
||
return lst_nu_density | ||
|
||
log10_E_min = 2 | ||
log10_E_max = 8 | ||
E_npts = 200 | ||
log10_E=np.power(10, np.linspace(log10_E_min, log10_E_max, E_npts)) | ||
Flux = Neutrino_Flux(0, 4, log10_E, 0.01 , 0.001, 1e-10) | ||
Flux = [log10_E[i]*log10_E[i]*Flux[i] for i in range(len(log10_E))] | ||
|
||
save_array = np.zeros([E_npts, 2]) | ||
save_array[:,0] = log10_E | ||
save_array[:,1] = Flux | ||
|
||
np.savetxt('ModelD.txt',save_array) |