-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
16f0965
commit 17e0b88
Showing
3 changed files
with
359 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
from __future__ import division | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import scipy.integrate as integrate | ||
from scipy.integrate import ode | ||
from scipy.interpolate import UnivariateSpline | ||
from scipy.interpolate import interp1d | ||
|
||
c=299792458*100 # cm/s | ||
|
||
def nt(z): # cm^-3 | ||
return 56*(1+z)**3 | ||
|
||
def L0(energy_nu, z, k=1, gamma=2, E_max=1.0e7): | ||
return k*np.power(energy_nu,-gamma)*np.exp(-energy_nu/E_max) | ||
|
||
|
||
def W(z, a=3.4 , b=-0.3 , c1=-3.5 , B=5000 , C=9 , eta=-10): | ||
return ((1+z)**(a*eta)+((1+z)/B)**(b*eta)+((1+z)/C)**(c1*eta))**(1/eta) | ||
|
||
def L(z, energy_nu): | ||
return W(z)*L0(energy_nu, z) | ||
|
||
def H(z, H0=0.678/(9.777752*3.16*1e16), OM=0.308, OL=0.692): # s^-1 | ||
return H0*np.sqrt(OM*(1.+z)**3. + OL) | ||
|
||
|
||
def sigma(energy_nu, g, M, m=1.e-10): # cm^2 | ||
return (g**4/(16*np.pi))*(2*energy_nu*m)/((2*energy_nu*m-M**2)**2+((M**4*g**4)/(16*np.pi**2)))* 0.389379e-27 | ||
|
||
def Adiabatic_Energy_Losses(z, energy_nu, nu_density): | ||
return H(z)*nu_density | ||
|
||
def Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10): | ||
return -c*nt(z)*sigma(energy_nu, g, M, m)*nu_density | ||
|
||
|
||
|
||
def Regeneration(z, energy_nu, interp_nu_density, g, M, m=1.e-10): | ||
|
||
def Integrand(z, energy_nu_in, energy_nu, interp_nu_density, g, M, m=1.e-10): | ||
return interp_nu_density(energy_nu_in)*sigma(energy_nu_in, g, M, m=1.e-10) | ||
|
||
regen = 0 | ||
regen = integrate.fixed_quad(lambda energy_nu_in: Integrand(z, energy_nu_in, energy_nu, interp_nu_density, g, M, m=1.e-10), energy_nu, 1e14, n=5)[0] | ||
|
||
regen=c*nt(z)*regen/(energy_nu) | ||
|
||
return regen | ||
|
||
def Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10): | ||
rhs = 0 | ||
|
||
rhs += Adiabatic_Energy_Losses(z, energy_nu, nu_density) | ||
rhs += L(z, energy_nu) | ||
rhs += Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10) | ||
rhs += Regeneration(z, energy_nu, interp_nu_density, g, M, m=1.e-10) | ||
|
||
print(Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10)/Regeneration(z, energy_nu, interp_nu_density, g, M, m=1.e-10)) | ||
|
||
rhs = rhs/(-(1+z)*H(z)) | ||
|
||
|
||
return rhs | ||
|
||
|
||
def Neutrino_Flux(z_min, z_max, lst_energy_nu, g, M, m=1.e-10): | ||
|
||
def Integrand(z, nu_density, energy_nu, interp_nu_density): | ||
return Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10) | ||
|
||
solver = ode(Integrand, jac=None).set_integrator('dop853', atol=1.e-4, rtol=1.e-4, nsteps=500, max_step=1.e-3, verbosity=1) | ||
|
||
lst_nu_density = [0.0]*len(lst_energy_nu) | ||
|
||
|
||
dz = 1.e-1 | ||
|
||
z = z_max | ||
|
||
while (z > z_min): | ||
lst_nu_density_new = np.zeros(lst_energy_nu.size) | ||
#interp_nu_density = interp1d(lst_energy_nu, lst_nu_density, kind='linear', bounds_error=False, fill_value='extrapolate') | ||
interp_nu_density = UnivariateSpline(lst_energy_nu, lst_nu_density, k=3, ext=0) | ||
# print(interp_nu_density(lst_energy_nu)) | ||
for i in range(len(lst_energy_nu)): | ||
|
||
solver.set_initial_value(lst_nu_density[i], z) | ||
solver.set_f_params(lst_energy_nu[i], interp_nu_density) | ||
sol = solver.integrate(solver.t-dz) | ||
|
||
lst_nu_density_new[i]=sol | ||
#print(lst_nu_density_new) | ||
|
||
lst_nu_density = [x for x in lst_nu_density_new] | ||
|
||
#print(lst_nu_density) | ||
z = z-dz | ||
|
||
return lst_nu_density | ||
|
||
|
||
log10_E_min = 2 | ||
log10_E_max = 8 | ||
E_npts = 100 | ||
log10_E=np.power(10, np.linspace(log10_E_min, log10_E_max, E_npts)) | ||
Flux = Neutrino_Flux(0, 4, log10_E, 0.03 , 0.01, 1e-10) | ||
Flux = [log10_E[i]*log10_E[i]*Flux[i] for i in range(len(log10_E))] | ||
norm = 1/Flux[0] | ||
Flux = [norm*nu_flux for nu_flux in Flux] | ||
|
||
plt.figure() | ||
plt.plot(log10_E,Flux) | ||
plt.xlabel('Neutrino energy $E[GeV]$') | ||
plt.ylabel('$ E^2 J \ [10^{-8}GeV \ cm^{-2} s^{-1} sr^{-1}]$') | ||
plt.xscale('log') | ||
#plt.ylim([0.0, 1.5]) | ||
plt.xlim([10**3.0, 10**8.0]) | ||
#plt.savefig('test.png') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
from __future__ import division | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from scipy.integrate import ode | ||
from scipy.interpolate import interp1d | ||
from scipy.interpolate import UnivariateSpline | ||
|
||
c=299792458*100 # cm/s | ||
|
||
def nt(z): # cm^-3 | ||
return 56*(1+z)**3 | ||
|
||
def L0(energy_nu, z, k=1, gamma=2, E_max=1.0e7): | ||
return k*np.power(energy_nu,-gamma)*np.exp(-energy_nu/E_max) | ||
|
||
|
||
def W(z, a=3.4 , b=-0.3 , c1=-3.5 , B=5000 , C=9 , eta=-10): | ||
return ((1+z)**(a*eta)+((1+z)/B)**(b*eta)+((1+z)/C)**(c1*eta))**(1/eta) | ||
|
||
def L(z, energy_nu): | ||
return W(z)*L0(energy_nu, z) | ||
|
||
def H(z, H0=0.678/(9.777752*3.16*1e16), OM=0.308, OL=0.692): # s^-1 | ||
return H0*np.sqrt(OM*(1.+z)**3. + OL) | ||
|
||
def sigma(energy_nu, g, M, m=1.e-10): # cm^2 | ||
return (g**4/(16*np.pi))*(2*energy_nu*m)/((2*energy_nu*m-M**2)**2+((M**4*g**4)/(16*np.pi**2)))* 0.389379e-27 | ||
|
||
def Adiabatic_Energy_Losses(z, energy_nu, nu_density): | ||
return H(z)*nu_density | ||
|
||
def Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10): | ||
return -c*nt(z)*sigma(energy_nu, g, M, m)*nu_density | ||
|
||
def Regeneration(z, energy_nu, interp_nu_density, g, M, m=1.e-10): | ||
regen = 0 | ||
energy_x_min = energy_nu | ||
energy_x_max = 8 | ||
energy_x_npoints = 20 | ||
energy_x = np.linspace(energy_x_min, energy_x_max, energy_x_npoints) | ||
|
||
delta_x = (energy_x_max - energy_x_min)/energy_x_npoints | ||
|
||
regen += 10**energy_x[0]*interp_nu_density(energy_x[0])*sigma(10**energy_x[0], g, M, m) | ||
for j in range(1, energy_x_npoints-2, 2): | ||
regen += 4*10**energy_x[j]*interp_nu_density(energy_x[j])*sigma(10**energy_x[j], g, M, m) | ||
|
||
for k in range(2, energy_x_npoints-2, 2): | ||
regen += 2*10**energy_x[k]*interp_nu_density(energy_x[k])*sigma(10**energy_x[k], g, M, m) | ||
|
||
regen += 10**energy_x[-1]*interp_nu_density(energy_x[-1])*sigma(10**energy_x[-1], g, M, m) | ||
|
||
regen=delta_x*c*nt(z)*regen*np.log(10)/(3*10**energy_x_min) | ||
|
||
|
||
return regen | ||
|
||
|
||
def Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10): | ||
rhs = 0 | ||
|
||
rhs += Adiabatic_Energy_Losses(z, 10**energy_nu, nu_density) | ||
rhs += L(z, 10**energy_nu) | ||
rhs += Attenuation(z, 10**energy_nu, nu_density, g, M, m=1.e-10) | ||
rhs += Regeneration(z, energy_nu, interp_nu_density, g, M, m=1.e-10) | ||
|
||
rhs = rhs/(-(1+z)*H(z)) | ||
|
||
|
||
return rhs | ||
|
||
def Neutrino_Flux(z_min, z_max, lst_energy_nu, g, M, m=1.e-10): | ||
|
||
def Integrand(z, nu_density, energy_nu, interp_nu_density): | ||
return Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10) | ||
|
||
solver = ode(Integrand, jac=None).set_integrator('dop853', atol=1.e-4, rtol=1.e-4, nsteps=500, max_step=1.e-3, verbosity=1) | ||
|
||
lst_nu_density = [0.0]*len(lst_energy_nu) | ||
|
||
|
||
dz = 1.e-1 | ||
|
||
z = z_max | ||
|
||
while (z > z_min): | ||
lst_nu_density_new = np.zeros(lst_energy_nu.size) | ||
#interp_nu_density = interp1d(lst_energy_nu, lst_nu_density, kind='linear', bounds_error=False, fill_value='extrapolate') | ||
#print(interp_nu_density(lst_energy_nu)) | ||
interp_nu_density = UnivariateSpline(lst_energy_nu, lst_nu_density, k=3, ext=0) | ||
for i in range(len(lst_energy_nu)): | ||
|
||
solver.set_initial_value(lst_nu_density[i], z) | ||
solver.set_f_params(lst_energy_nu[i], interp_nu_density) | ||
sol = solver.integrate(solver.t-dz) | ||
|
||
lst_nu_density_new[i]=sol | ||
#print(lst_nu_density_new) | ||
|
||
lst_nu_density = [x for x in lst_nu_density_new] | ||
|
||
#print(lst_nu_density) | ||
z = z-dz | ||
|
||
return lst_nu_density | ||
|
||
log10_E_test_min = 2 | ||
log10_E_test_max = 8 | ||
E_test_npts = 150 | ||
E_test=np.linspace(log10_E_test_min, log10_E_test_max, E_test_npts) | ||
#E_test=np.append(E_test, [5e3, 4.5e4, 5e5, 5e7 ]) | ||
E_test=np.append(E_test, np.log10(5e5)) | ||
E_test=np.sort(E_test) | ||
flux = Neutrino_Flux(0, 4, E_test, 0.03, 0.01, 1e-10) | ||
flux = [10**E_test[i]*10**E_test[i]*flux[i] for i in range(len(E_test))] | ||
norm = 1/flux[0] | ||
flux = [norm*nu_flux for nu_flux in flux] | ||
|
||
plt.figure() | ||
plt.plot(E_test,flux) | ||
plt.xlabel('Neutrino energy $E[GeV]$') | ||
plt.ylabel('$ E^2 J \ [10^{-8}GeV \ cm^{-2} s^{-1} sr^{-1}]$') | ||
#plt.ylim([0.0, 1.5]) | ||
plt.xlim([3.0, 8.0]) | ||
plt.savefig('test.png') | ||
#plt.xscale('log') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
from __future__ import division | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from scipy.integrate import ode | ||
from scipy.interpolate import interp1d | ||
|
||
c=299792458*100 # cm/s | ||
|
||
def nt(z): # cm^-3 | ||
return 56*(1+z)**3 | ||
|
||
def L0(energy_nu, z, k=1, gamma=2, E_max=1.0e7): | ||
return k*np.power(energy_nu,-gamma)*np.exp(-energy_nu/E_max) | ||
|
||
|
||
def W(z, a=3.4 , b=-0.3 , c1=-3.5 , B=5000 , C=9 , eta=-10): | ||
return ((1+z)**(a*eta)+((1+z)/B)**(b*eta)+((1+z)/C)**(c1*eta))**(1/eta) | ||
|
||
def L(z, energy_nu): | ||
return W(z)*L0(energy_nu, z) | ||
|
||
def H(z, H0=0.678/(9.777752*3.16*1e16), OM=0.308, OL=0.692): # s^-1 | ||
return H0*np.sqrt(OM*(1.+z)**3. + OL) | ||
|
||
|
||
def sigma(energy_nu, g, M, m=1.e-10): # cm^2 | ||
return (g**4/(16*np.pi))*(2*energy_nu*m)/((2*energy_nu*m-M**2)**2+((M**4*g**4)/(16*np.pi**2)))* 0.389379e-27 | ||
|
||
|
||
def Adiabatic_Energy_Losses(z, energy_nu, nu_density): | ||
return H(z)*nu_density | ||
|
||
def Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10): | ||
return -c*nt(z)*sigma(energy_nu, g, M, m)*nu_density | ||
|
||
|
||
|
||
def Regeneration(z, energy_nu, lst_energy_nu, lst_nu_density, g, M, m=1.e-10): | ||
regen = 0 | ||
index = list(lst_energy_nu).index(energy_nu) | ||
#print(index) | ||
for j in range (index, len(lst_energy_nu)-1): | ||
regen += sigma(lst_energy_nu[j], g, M, m)*lst_nu_density[j]*(lst_energy_nu[j+1]-lst_energy_nu[j]) | ||
|
||
regen=c*nt(z)*regen/(energy_nu) | ||
|
||
|
||
return regen | ||
|
||
def Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10): | ||
rhs = 0 | ||
|
||
rhs += Adiabatic_Energy_Losses(z, energy_nu, nu_density) | ||
rhs += L(z, energy_nu) | ||
rhs += Attenuation(z, energy_nu, nu_density, g, M, m=1.e-10) | ||
rhs += Regeneration(z, energy_nu, lst_energy_nu, lst_nu_density, g, M, m=1.e-10) | ||
|
||
rhs = rhs/(-(1+z)*H(z)) | ||
|
||
return rhs | ||
|
||
def Neutrino_Flux(z_min, z_max, lst_energy_nu, g, M, m=1.e-10): | ||
|
||
def Integrand(z, nu_density, energy_nu, interp_nu_density): | ||
return Propagation_Eq(z, nu_density, energy_nu, lst_energy_nu, lst_nu_density, interp_nu_density, g, M, m=1.e-10) | ||
|
||
solver = ode(Integrand, jac=None).set_integrator('dop853', atol=1.e-4, rtol=1.e-4, nsteps=500, max_step=1.e-3, verbosity=1) | ||
|
||
lst_nu_density = [0.0]*len(lst_energy_nu) | ||
|
||
|
||
dz = 1.e-1 | ||
|
||
z = z_max | ||
|
||
while (z > z_min): | ||
lst_nu_density_new = np.zeros(lst_energy_nu.size) | ||
|
||
for i in range(len(lst_energy_nu)): | ||
|
||
solver.set_initial_value(lst_nu_density[i], z) | ||
solver.set_f_params(lst_energy_nu[i], lst_nu_density) | ||
sol = solver.integrate(solver.t-dz) | ||
|
||
lst_nu_density_new[i]=sol | ||
#print(lst_nu_density_new) | ||
|
||
lst_nu_density = [x for x in lst_nu_density_new] | ||
|
||
#print(lst_nu_density) | ||
z = z-dz | ||
|
||
return lst_nu_density | ||
|
||
log10_E_test_min = 2 | ||
log10_E_test_max = 8 | ||
E_test_npts = 100 | ||
E_test=np.power(10, np.linspace(log10_E_test_min, log10_E_test_max, E_test_npts)) | ||
#E_test=np.append(E_test, [5e3, 4.5e4, 5e5, 5e7 ]) | ||
E_test=np.append(E_test, np.log10(5e5)) | ||
E_test=np.sort(E_test) | ||
flux = Neutrino_Flux(0, 4, E_test, 0.01, 0.001, 1e-10) | ||
flux = [E_test[i]*E_test[i]*flux[i] for i in range(len(E_test))] | ||
norm = 1/flux[0] | ||
flux = [norm*nu_flux for nu_flux in flux] | ||
|
||
plt.figure() | ||
plt.plot(E_test,flux) | ||
plt.xlabel('Neutrino energy $E[GeV]$') | ||
plt.ylabel('$ E^2 J \ [10^{-8}GeV \ cm^{-2} s^{-1} sr^{-1}]$') | ||
plt.xscale('log') | ||
#plt.ylim([0.0, 1.5]) | ||
plt.xlim([10**3.0, 10**8.0]) | ||
plt.savefig('TestSimpleD.png') |