Skip to content

Sklearn introduction with stock prediction: comparison of linear models

Notifications You must be signed in to change notification settings

mathbeal/p_stock_prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stock Prediction

This code compare several linear models from sklearn librairy in order to predict stock. /data: APPL.csv.

The training set is based on a window of N days, the target value is the following day.

Description

This code try several parameters changes to check impact on prediction. All combinations are checked for all models and only top10 (RMSE score) are displayed.

Results

Chart comparing the 10 best predictions.

Alt text

Root Mean Squarred Error results (sorted: best first)

Samples:

  • [1][model=LinearRegression s=10 frac=0.7fit_intercept=False normalize=True] score=3.329237228064044 ** BEST
  • [2][model=LinearRegression s=10 frac=0.7fit_intercept=False normalize=False] score=3.329237228064044
  • [3][model=Ridge s=10 frac=0.7fit_intercept=False alpha=1.0] score=3.3293174192861867
  • [4][model=Ridge s=10 frac=0.7fit_intercept=False alpha=1.1] score=3.3293254577040705
  • [5][model=BayesianRidge s=10 frac=0.7fit_intercept=False n_iter=300] score=3.3468441167291743
  • [6][model=LassoLars s=10 frac=0.7fit_intercept=False alpha=1.1] score=3.361863077205247
  • [7][model=LassoLars s=10 frac=0.7fit_intercept=False alpha=1.0] score=3.3628894021644435
  • [8][model=LassoLars s=15 frac=0.7fit_intercept=False alpha=1.1] score=3.399937460735615
  • [9][model=LassoLars s=15 frac=0.7fit_intercept=False alpha=1.0] score=3.4029249158774477
  • [10][model=LinearRegression s=15 frac=0.7fit_intercept=False normalize=True] score=3.4402616157909653
  • [11][model=LinearRegression s=15 frac=0.7fit_intercept=False normalize=False] score=3.4402616157909653
  • [12][model=Ridge s=15 frac=0.7fit_intercept=False alpha=1.0] score=3.4404017547558765
  • [13][model=Ridge s=15 frac=0.7fit_intercept=False alpha=1.1] score=3.4404157852087014
  • [14][model=LassoLars s=55 frac=0.7fit_intercept=False alpha=1.1] score=3.4566733970927497
  • [15][model=LassoLars s=55 frac=0.7fit_intercept=False alpha=1.0] score=3.4738485938536816
  • [16][model=BayesianRidge s=10 frac=0.8fit_intercept=False n_iter=300] score=3.4865633099831275
  • [17][model=BayesianRidge s=15 frac=0.7fit_intercept=False n_iter=300] score=3.4873511446158356
  • [18][model=Ridge s=10 frac=0.8fit_intercept=False alpha=1.1] score=3.489907851164658
  • [19][model=Ridge s=10 frac=0.8fit_intercept=False alpha=1.0] score=3.489912997254991
  • [20][model=LinearRegression s=10 frac=0.8fit_intercept=False normalize=True] score=3.489964738843719
  • [21][model=LinearRegression s=10 frac=0.8fit_intercept=False normalize=False] score=3.489964738843719
  • [22][model=LassoLars s=30 frac=0.7fit_intercept=False alpha=1.0] score=3.5291854352735186
  • [23][model=LassoLars s=30 frac=0.7fit_intercept=False alpha=1.1] score=3.5321217727932126
  • [24][model=BayesianRidge s=15 frac=0.8fit_intercept=False n_iter=300] score=3.539748258433491
  • [25][model=Ridge s=15 frac=0.8fit_intercept=False alpha=1.1] score=3.5410391205878593

Samples:

  • [1][model=LinearRegression s=10 frac=0.7fit_intercept=False normalize=True] score=3.329237228064044 ** BEST
  • [2][model=LinearRegression s=10 frac=0.7fit_intercept=False normalize=False] score=3.329237228064044
  • [3][model=Ridge s=10 frac=0.7fit_intercept=False normalize=True alpha=0.1] score=3.3292452313618024
  • [4][model=Ridge s=10 frac=0.7fit_intercept=False normalize=False alpha=0.1] score=3.3292452313618024
  • [5][model=Ridge s=10 frac=0.7fit_intercept=False normalize=True alpha=0.30000000000000004] score=3.3292612485236264
  • [6][model=Ridge s=10 frac=0.7fit_intercept=False normalize=False alpha=0.30000000000000004] score=3.3292612485236264
  • [7][model=Ridge s=10 frac=0.7fit_intercept=False normalize=True alpha=0.5000000000000001] score=3.3292772797589114
  • [8][model=Ridge s=10 frac=0.7fit_intercept=False normalize=False alpha=0.5000000000000001] score=3.3292772797589114
  • [9][model=Ridge s=10 frac=0.7fit_intercept=False normalize=True alpha=0.7000000000000001] score=3.3292933250474643
  • [10][model=Ridge s=10 frac=0.7fit_intercept=False normalize=False alpha=0.7000000000000001] score=3.3292933250474643

About

Sklearn introduction with stock prediction: comparison of linear models

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages