Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Supremums ereal #203

Merged
merged 6 commits into from
Jun 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,23 @@

### Added

- in `boolp.v`, lemmas for classical reasoning `existsNP`, `existsP`,
`forallNP`, `forallP`, `imply_classic`, `orC`.
- in `classical_sets.v`, definitions for supremums: `ul`, `lb`,
`supremum`
- in `ereal.v`:
+ technical lemmas `lee_ninfty_eq`, `lee_pinfty_eq`, `lte_subl_addr`
+ lemmas about supremum: `ereal_supremums_neq0`
+ definitions:
* `ereal_sup`, `ereal_inf`
+ lemmas about `ereal_sup`:
* `ereal_sup_ub`, `ub_ereal_sup`, `ub_ereal_sup_adherent`

### Changed

- in `reals.v`, `pred` replaced by `set` from `classical_sets.v`
+ change propagated in many files

### Renamed

### Removed
Expand Down
27 changes: 14 additions & 13 deletions theories/Rstruct.v
Original file line number Diff line number Diff line change
Expand Up @@ -374,44 +374,45 @@ Canonical R_rcfType := RcfType R Rreal_closed_axiom.
End ssreal_struct.

Local Open Scope ring_scope.
Require Import reals boolp.
Require Import reals boolp classical_sets.

Section ssreal_struct_contd.

Lemma is_upper_boundE (E : pred R) x : is_upper_bound E x = (x \in ub E).
Lemma is_upper_boundE (E : set R) x : is_upper_bound E x = ((ub E) x).
Proof.
rewrite /is_upper_bound inE forallbE asboolE /=; apply/eq_forall=> y.
by rewrite -(reflect_eq implyP) (reflect_eq (RleP _ _)).
rewrite propeqE; split; [move=> h|move=> /ubP h y Ey; exact/RleP/h].
by apply/ubP => y Ey; apply/RleP/h.
Qed.

Lemma boundE (E : pred R) : bound E = has_ub E.
Lemma boundE (E : set R) : bound E = has_ub E.
Proof. by apply/eq_exists=> x; rewrite is_upper_boundE. Qed.

Lemma completeness' (E : pred R) : has_sup E -> {m : R | is_lub E m}.
Lemma completeness' (E : set R) : has_sup E -> {m : R | is_lub E m}.
Proof. by move=> [eE bE]; rewrite -boundE in bE; apply: completeness. Qed.

Definition real_sup (E : pred R) : R :=
Definition real_sup (E : set R) : R :=
if pselect (has_sup E) isn't left hsE then 0 else projT1 (completeness' hsE).

Lemma real_sup_is_lub (E : pred R) : has_sup E -> is_lub E (real_sup E).
Lemma real_sup_is_lub (E : set R) : has_sup E -> is_lub E (real_sup E).
Proof.
by move=> hsE; rewrite /real_sup; case: pselect=> // ?; case: completeness'.
Qed.

Lemma real_sup_ub (E : pred R) : has_sup E -> real_sup E \in ub E.
Lemma real_sup_ub (E : set R) : has_sup E -> (ub E) (real_sup E).
Proof. by move=> /real_sup_is_lub []; rewrite is_upper_boundE. Qed.

Lemma real_sup_out (E : pred R) : ~ has_sup E -> real_sup E = 0.
Lemma real_sup_out (E : set R) : ~ has_sup E -> real_sup E = 0.
Proof. by move=> nosup; rewrite /real_sup; case: pselect. Qed.

(* :TODO: rewrite like this using (a fork of?) Coquelicot *)
(* Lemma real_sup_adherent (E : pred R) : real_sup E \in closure E. *)
Lemma real_sup_adherent (E : pred R) (eps : R) :
Lemma real_sup_adherent (E : set R) (eps : R) :
has_sup E -> 0 < eps -> exists2 e : R, E e & (real_sup E - eps) < e.
Proof.
move=> supE eps_gt0; set m := _ - eps; apply: contrapT=> mNsmall.
have: m \in ub E.
apply/ubP=> y Ey; have /negP := mNsmall (ex_intro2 _ _ y Ey _).
have: (ub E) m.
apply/ubP => y Ey.
have /negP := mNsmall (ex_intro2 _ _ y Ey _).
by rewrite -leNgt.
have [_ /(_ m)] := real_sup_is_lub supE.
rewrite is_upper_boundE => m_big /m_big /RleP.
Expand Down
6 changes: 3 additions & 3 deletions theories/altreals/distr.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

(* -------------------------------------------------------------------- *)
From mathcomp Require Import all_ssreflect all_algebra.
Require Import xfinmap boolp ereal reals discrete.
Require Import xfinmap boolp classical_sets ereal reals discrete.
Require Import realseq realsum.

Set Implicit Arguments.
Expand Down Expand Up @@ -157,8 +157,8 @@ Qed.
Local Lemma isd3 : psum mu <= 1.
Proof.
rewrite psumE; [apply/isd1 | apply/isd2 | apply/sup_le_ub].
by exists 0; apply/imsetbP; exists fset0; rewrite big_fset0.
apply/ubP=> y /imsetbP[x ->]; rewrite big_fset_seq /=.
by exists 0, fset0; rewrite big_fset0.
apply/ubP=> y [x ->]; rewrite big_fset_seq /=.
by case: isd => _; apply; case: x => x /= /canonical_uniq.
Qed.

Expand Down
19 changes: 10 additions & 9 deletions theories/altreals/realseq.v
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
From mathcomp Require Import all_ssreflect all_algebra.
Require Import mathcomp.bigenough.bigenough.
Require Import xfinmap boolp ereal reals discrete.
Require Import classical_sets.

Set Implicit Arguments.
Unset Strict Implicit.
Expand Down Expand Up @@ -213,7 +214,7 @@ Proof. by move=> le_uv; apply/(@ncvg_le_from 0). Qed.
Lemma ncvg_nbounded u x : ncvg u x%:E -> nbounded u.
Proof. (* FIXME: factor out `sup` of a finite set *)
case/(_ (B x 1)) => K cu; pose S := [seq `|u n| | n <- iota 0 K].
pose M : R := sup [pred x in S]; pose e := Num.max (`|x| + 1) (M + 1).
pose M : R := sup [set x : R | x \in S]; pose e := Num.max (`|x| + 1) (M + 1).
apply/asboolP/nboundedP; exists e => [|n]; first by rewrite ltxU ltr_paddl.
case: (ltnP n K); last first.
move/cu; rewrite inE eclamp_id ?ltr01 // => ltunBx1.
Expand All @@ -222,8 +223,8 @@ case: (ltnP n K); last first.
move=> lt_nK; have: `|u n| \in S; first by apply/map_f; rewrite mem_iota.
move=> un_S; rewrite ltxU; apply/orP; right.
case E: {+}K lt_nK => [|k] // lt_nSk; apply/ltr_spaddr; first apply/ltr01.
apply/sup_upper_bound; last by apply/map_f; rewrite mem_iota E.
apply/has_supP; split; first by exists `|u 0%N|; rewrite /S E inE eqxx.
suff : has_sup (fun x : R => x \in S) by move/sup_upper_bound/ubP => ->.
split; first by exists `|u 0%N|; rewrite /S E inE eqxx.
elim: {+}S => [|v s [ux /ubP hux]]; first by exists 0; apply/ubP.
exists (Num.max v ux); apply/ubP=> y; rewrite inE => /orP[/eqP->|].
by rewrite lexU lexx.
Expand Down Expand Up @@ -534,18 +535,18 @@ Qed.
Lemma nlim_sup (u : nat -> R) l :
(forall n m, (n <= m)%N -> u n <= u m)
-> ncvg u l%:E
-> sup [pred r | `[exists n, r == u n]] = l.
-> sup [set r | exists n, r = u n] = l.
Proof.
move=> mn_u cv_ul; set S := (X in sup X); suff: ncvg u (sup S)%:E.
by move/nlimE; move/nlimE: cv_ul => -> [->].
elim/nbh_finW=> /= e gt0_e; have sS: has_sup S.
apply/has_supP; split; first exists (u 0%N).
by apply/imsetbP; exists 0%N.
exists l; apply/ubP => _ /imsetbP[n ->].
split; first exists (u 0%N).
by exists 0%N.
exists l; apply/ubP => _ [n ->].
by rewrite -lee_fin; apply/ncvg_homo_le.
have /sup_adherent := sS => /(_ _ gt0_e) [r /imsetbP] [N ->] lt_uN.
have /sup_adherent := sS => /(_ _ gt0_e) [r] [N ->] lt_uN.
exists N => n le_Nn; rewrite !inE distrC ger0_norm ?subr_ge0.
by apply/sup_upper_bound => //; apply/imsetbP; exists n.
by move/ubP : (sup_upper_bound sS) => -> //; exists n.
by rewrite ltr_subl_addr -ltr_subl_addl (lt_le_trans lt_uN) ?mn_u.
Qed.

Expand Down
Loading