Skip to content

martakarass/arcstats

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

arcstats

The arcstats package allows to generate summaries of the minute-level physical activity (PA) data. The default parameters are chosen for the Actigraph activity counts collected with a wrist-worn device; however, the package can be used for all minute-level PA data with the corresponding timestamps vector.

Below, we demonstrate the use of arcstats with the attached, exemplary minute-level Actigraph PA counts data.

Installation

You can install the released version of arcstats from GitHub. Note you may need to install devtools package if not yet installed (the line commented below).

# install.packages("devtools")
devtools::install_github("martakarass/arcstats")

Documentation

A PDF with detailed documentation of all methods can be accessed here.

Using arcstats package to compute physical activity summaries

Reading PA data

Four CSV data sets with minute-level activity counts data are attached to the arcstats package. The data file names are stored in extdata_fnames.

library(arcstats)
library(data.table)
library(dplyr)
library(lubridate)
library(ggplot2)

## Read one of the data sets
fpath <- system.file("extdata", extdata_fnames[1], package = "arcstats")
dat   <- as.data.frame(fread(fpath))
rbind(head(dat, 3), tail(dat, 3))
#>       Axis1 Axis2 Axis3 vectormagnitude           timestamp
#> 1      1021  1353  2170            2754 2018-07-13 10:00:00
#> 2      1656  1190  2212            3009 2018-07-13 10:01:00
#> 3      2540  1461  1957            3524 2018-07-13 10:02:00
#> 10078     0     0     0               0 2018-07-20 09:57:00
#> 10079     0     0     0               0 2018-07-20 09:58:00
#> 10080     0     0     0               0 2018-07-20 09:59:00

The data columns are:

  • Axis1 - sensor’s X axis minute-level counts data,
  • Axis2 - sensor’s Y axis minute-level counts data,
  • Axis3 - sensor’s Z axis minute-level counts data,
  • vectormagnitude - minute-level counts data defined as sqrt(Axis1^2 + Axis2^2 + Axis3^2),
  • timestamp - time-stamps corresponding to minute-level measures.
## Plot activity counts
ggplot(dat, aes(x = ymd_hms(timestamp), y = vectormagnitude)) + 
  geom_line(size = 0.3, alpha = 0.8) + 
  labs(x = "Time", y = "Activity counts") + 
  theme_gray(base_size = 10) + 
  scale_x_datetime(date_breaks = "1 day", date_labels = "%b %d")

Computing summaries with activity_stats method

acc    <- dat$vectormagnitude
acc_ts <- ymd_hms(dat$timestamp)

activity_stats(acc, acc_ts)

n_days

n_valid_days

wear_time_on_valid_days

tac

tlac

ltac

8

4

1440

2826648

6429.838

14.8546

astp

satp

time_spent_active

time_spent_nonactive

0.1781782

0.0951621

499.5

940.5

no_of_active_bouts

no_of_nonactive_bouts

mean_active_bout

mean_nonactive_bout

89

89.5

5.61236

10.50838

Output explained

To explain activity_stats method output, we define activity count, active/non-active minute, and active/non-active bout.

  • Activity count (AC) - a minute-level metric of PA volume
  • Active minute - AC labeled as active (non-sedentary). For Wrist-worn Actigraph we use AC>=1853 (defaut threshold).
  • Active bout - sequence of >=1 consecutive active minute(s).
  • Valid day - a day with less than 10% of the non-wear time (see ?get_wear_flag for wear/non-wear time detection details).

Meta information:

  • n_days - number of days (unique day dates) of data collection.
  • n_valid_days - number of days (unique day dates) of data collection determined as valid days.
  • wear_time_on_valid_days - average number of wear-time minutes across valid days.

Summaries of PA volumes metrics:

  • tac - TAC, Total activity counts per day - sum of AC measured on valid days divided by the number of valid days.
  • tlac - TLAC, Total-log activity counts per day - sum of log(1+AC) measured on valid days divided by the number of valid days. Here ‘log’ denotes the natural logarithm.
  • ltac - LTAC, Log-total activity counts - natural logarithm of TAC.
  • time_spent_active - Average number of active minutes per valid day.
  • time_spent_nonactive - Average number of sedentary minutes per valid day.

Summaries of PA fragmentation metrics:

  • astp - ASTP, active to sedentary transition probability on valid days.
  • satp - SATP, sedentary to active transition probability on valid days.
  • no_of_active_bouts - Average number of active minutes per valid day.
  • no_of_nonactive_bouts - Average number of sedentary minutes per valid day.
  • mean_active_bout - Average duration (in minutes) of an active bout on valid days.
  • mean_nonactive_bout - Average duration (in minutes) of a sedentary bout on valid days.

Additionalactivity_stats method options

Summarizing PA only in a chosen time-of-day subset

The subset_minutes argument allows to specify subset of a day’s minutes where activity summaries should be computed. There are 1440 minutes in a 24-hour day where 1 denotes 1st minute of the day (from 00:00 to 00:01), and 1440 denotes the last minute (from 23:59 to 00:00).

Here, we summarize PA observed between 12:00 AM and 6:00 AM.

subset_12am_6am <- 1 : (6 * 1440/24)
activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am) 

n_days

n_valid_days

wear_time_on_valid_days

tac_0to6only

tlac_0to6only

ltac_0to6only

8

4

1440

65477.5

322.1523

11.08946

astp_0to6only

satp_0to6only

time_spent_active_0to6only

time_spent_nonactive_0to6only

0.5581395

0.0200429

10.75

349.25

no_of_active_bouts_0to6only

no_of_nonactive_bouts_0to6only

mean_active_bout_0to6only

mean_nonactive_bout_0to6only

6

7

1.791667

49.89286

By default, column names have a suffix added to denote that a subset of minutes was used (here, _0to6only). This can be disabled by setting adjust_out_colnames to FALSE.

subset_12am_6am = 1 : (6/24 * 1440)
subset_6am_12pm = (6/24 * 1440 + 1) : (12/24 * 1440) 
subset_12pm_6pm = (12/24 * 1440 + 1) : (18/24 * 1440) 
subset_6pm_12am = (18/24 * 1440 + 1) : (24/24 * 1440) 
out <- rbind(
  activity_stats(acc, acc_ts, subset_minutes = subset_12am_6am, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_6am_12pm, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_12pm_6pm, adjust_out_colnames = FALSE),
  activity_stats(acc, acc_ts, subset_minutes = subset_6pm_12am, adjust_out_colnames = FALSE))
rownames(out) <- c("12am-6am", "6am-12pm", "12pm-6pm", "6pm-12am")
out

n_days

n_valid_days

wear_time_on_valid_days

tac

tlac

ltac

12am-6am

8

4

1440

65477.5

322.1523

11.08946

6am-12pm

8

4

1440

1089788.5

2139.4534

13.90149

12pm-6pm

8

4

1440

994104.8

2194.8539

13.80960

6pm-12am

8

4

1440

677277.5

1773.3781

13.42584

astp

satp

time_spent_active

time_spent_nonactive

12am-6am

0.5581395

0.0200429

10.75

349.25

6am-12pm

0.1501377

0.1540616

181.50

178.50

12pm-6pm

0.1751337

0.1864162

187.00

173.00

6pm-12am

0.2037422

0.1032325

120.25

239.75

no_of_active_bouts

no_of_nonactive_bouts

mean_active_bout

mean_nonactive_bout

12am-6am

6.00

7.00

1.791667

49.892857

6am-12pm

27.25

27.50

6.660551

6.490909

12pm-6pm

32.75

32.25

5.709924

5.364341

6pm-12am

24.50

24.75

4.908163

9.686869

Summarizing PA with a chosen time-of-day excluded

The exclude_minutes argument allows to specify subset of a day’s minutes excluded for computing activity summaries.

Here, we summarize PA while excluding observations between 11:00 PM and 5:00 AM.

subset_11pm_5am <- c(
  (23 * 1440/24 + 1) : 1440,   ## 11:00 PM - midnight
  1 : (5 * 1440/24)            ## midnight - 5:00 AM
) 
activity_stats(acc, acc_ts, exclude_minutes = subset_11pm_5am) 

n_days

n_valid_days

wear_time_on_valid_days

tac_23to5removed

tlac_23to5removed

ltac_23to5removed

8

4

1440

2735749

6052.84

14.82192

astp_23to5removed

satp_23to5removed

time_spent_active_23to5removed

time_spent_nonactive_23to5removed

0.1702018

0.1395057

483.25

596.75

no_of_active_bouts_23to5removed

no_of_nonactive_bouts_23to5removed

mean_active_bout_23to5removed

mean_nonactive_bout_23to5removed

82.25

83.25

5.87538

7.168168

Summarizing PA excluding in-bed time

The in_bed_time and out_bed_time arguments allow to provide day-specific in-bed periods to be excluded from analysis.

Here, we summarize PA excluding in-bed time estimated by ActiLife software.

ActiLife-estimated in-bed data

The ActiLife-estimated in-bed data file is attached to the arcstats package. The sleep data columns relevant are,

  • Subject Name - subject IDs coressponding to AC data, stored in extdata_fnames,
  • In Bed Time - ActiLife-estimated start of in-bed interval for each day of the measurement,
  • Out Bed Time - ActiLife-estimated end of in-bed interval.
## Read sleep details data file
SleepDetails_fname <- "BatchSleepExportDetails_2020-05-01_14-00-46.csv"
SleepDetails_fpath <- system.file("extdata", SleepDetails_fname, package = "arcstats")
SleepDetails       <- as.data.frame(fread(SleepDetails_fpath))

## Filter sleep details data to keep data correcponding to current counts data file
SleepDetails_sub <-
    SleepDetails %>%
    filter(`Subject Name` == "ID_1") %>%
    mutate(`In Bed Time`  = mdy_hms(`In Bed Time`),
           `Out Bed Time` = mdy_hms(`Out Bed Time`)) %>%
    select(`Subject Name`, `In Bed Time`, `Out Bed Time`) 
SleepDetails_sub
#>   Subject Name         In Bed Time        Out Bed Time
#> 1         ID_1 2018-07-13 21:18:00 2018-07-14 04:50:00
#> 2         ID_1 2018-07-14 22:41:00 2018-07-15 05:40:00
#> 3         ID_1 2018-07-16 19:46:00 2018-07-17 04:32:00
#> 4         ID_1 2018-07-17 23:30:00 2018-07-18 06:32:00
#> 5         ID_1 2018-07-18 22:16:00 2018-07-19 07:17:00
#> 6         ID_1 2018-07-19 22:30:00 2018-07-20 06:40:00

Finally, we use in/out-bed time POSIXct vectors in activity_stats method.

in_bed_time  <- SleepDetails_sub[, "In Bed Time"]
out_bed_time <- SleepDetails_sub[, "Out Bed Time"]

activity_stats(acc, acc_ts, in_bed_time = in_bed_time, out_bed_time = out_bed_time) 

n_days

n_valid_days

wear_time_on_valid_days

tac_inbedremoved

tlac_inbedremoved

ltac_inbedremoved

8

4

1440

2746582

6062.753

14.82587

astp_inbedremoved

satp_inbedremoved

time_spent_active_inbedremoved

time_spent_nonactive_inbedremoved

0.1703551

0.1580934

485.75

529.75

no_of_active_bouts_inbedremoved

no_of_nonactive_bouts_inbedremoved

mean_active_bout_inbedremoved

mean_nonactive_bout_inbedremoved

82.75

83.75

5.870091

6.325373

Components of activity_stats method

The primary method activity_stats is composed of several steps implemented in their respective functions. Below, we demonstrate how to produce activity_stats results step by step with these functions.

We reuse the objects:

  • acc - numeric vector; minute-level activity counts data,
  • acc_ts - POSIXct vector; minute-level time of acc data collection.
df <- data.frame(acc = acc, acc_ts = acc_ts)
rbind(head(df, 3), tail(df, 3))
#>        acc              acc_ts
#> 1     2754 2018-07-13 10:00:00
#> 2     3009 2018-07-13 10:01:00
#> 3     3524 2018-07-13 10:02:00
#> 10078    0 2018-07-20 09:57:00
#> 10079    0 2018-07-20 09:58:00
#> 10080    0 2018-07-20 09:59:00

Expand the length of minute-level AC vector to integer number of full 24-hour periods by NA-padding with midnight_to_midnight

  • In the returned vector, the first observation corresponds to minute of 00:00-00:01 on the first day of data collection, and last observation corresponds to minute of 23:50-00:00 on the last day of data collection.
  • Entries corresponding to non-measured minutes are filled with NA.

Here, collected data cover total of 7*24*1440 = 10080 minutes (from 2018-07-13 10:00:00 to 2018-07-20 09:59:00), but spans 8*24*1440 = 11520 minutes of full midnight-to-midnight days (from 2018-07-13 00:00:00 to 2018-07-20 23:59:00).

acc <- midnight_to_midnight(acc = acc, acc_ts = acc_ts)

## Vector length on non NA-obs, vector length after acc 
c(length(acc[!is.na(acc)]), length(acc))
#> [1] 10080 11520

Get wear/non-wear flag with get_wear_flag

Function get_wear_flag computes wear/non-wear flag (1/0) for each minute of activity counts data. Method implements wear/non-wear detection algorithm proposed by Choi et al. (2011).

  • The returned vector has value 1 for wear and 0 for non-wear flagged minute.
  • If there is an NA entry in a data input vector, then the returned vector will have a corresponding entry set to NA too.
wear_flag <- get_wear_flag(acc)

## Proportion of wear time across the days
wear_flag_mat <- matrix(wear_flag, ncol = 1440, byrow = TRUE)
round(apply(wear_flag_mat, 1, sum, na.rm = TRUE) / 1440, 3)
#> [1] 0.583 1.000 0.874 0.679 1.000 1.000 1.000 0.338

Get valid/non-valid day flag with get_valid_day_flag

Function get_valid_day_flag computes valid/non-valid day flag (1/0) for each minute of activity counts data.

Here, 4 out of 8 days have more that 10% (144 minutes) of missing data.

valid_day_flag <- get_valid_day_flag(wear_flag)

## Compute number of valid days
valid_day_flag_mat <- matrix(valid_day_flag, ncol = 1440, byrow = TRUE)
apply(valid_day_flag_mat, 1, mean, na.rm = TRUE)
#> [1] 0 1 0 0 1 1 1 0

Impute missing data with impute_missing_data

Here, all four valid days have 100% of wear time. We hence demonstrate the impute_missing_data method by artificially replacing 1h (4%) of a valid day with non-wear and running impute_missing_data function then.

Function impute_missing_data imputes missing data from the “average day profile”. An “average day profile” is computed as a minute-wise average of AC across valid days.

## Copies of original objects for the purpose of demonstration
acc_cpy  <- acc
wear_flag_cpy <- wear_flag

## Artificially replace 1h (4%) of a valid day with non-wear 
repl_idx <- seq(from = 1441, by = 1, length.out = 60)
acc_cpy[repl_idx] <- 0
wear_flag_cpy[repl_idx] <- 0

## Impute data for minutes identified as non-wear in days identified as valid
acc_cpy_imputed <- impute_missing_data(acc_cpy, wear_flag_cpy, valid_day_flag)

## Compare mean activity count on valid days before and after imputation
c(mean(acc_cpy[which(valid_day_flag == 1)]), 
  mean(acc_cpy_imputed[which(valid_day_flag == 1)]))
#> [1] 1955.521 1957.186

Create PA characteristics with summarize_PA

Finally, method summarize_PA computes physical all PA characteristics.

  • Same as activity_stats, it returns a data frame with physical activity summaries.
  • Same as activity_stats, it accepts arguments to compute physical activity summaries
    • within a fixed subset of minutes (arg. subset_minutes),
    • excluding a fixed subset of minutes (arg. exclude_minutes),
    • excluding day-specific in-bed intervals (args in_bed_time, out_bed_time). See ?summarize_PA for more details.

Here, we summarize PA with the default parameters, across all valid days.

summarize_PA(acc, acc_ts, wear_flag, valid_day_flag) 

n_days

n_valid_days

wear_time_on_valid_days

tac

tlac

ltac

8

4

1440

2826648

6429.838

14.8546

astp

satp

time_spent_active

time_spent_nonactive

0.1781782

0.0951621

499.5

940.5

no_of_active_bouts

no_of_nonactive_bouts

mean_active_bout

mean_nonactive_bout

89

89.5

5.61236

10.50838

It returns the same results as the activity_stats function:

activity_stats(dat$vectormagnitude, ymd_hms(dat$timestamp))

n_days

n_valid_days

wear_time_on_valid_days

tac

tlac

ltac

8

4

1440

2826648

6429.838

14.8546

astp

satp

time_spent_active

time_spent_nonactive

0.1781782

0.0951621

499.5

940.5

no_of_active_bouts

no_of_nonactive_bouts

mean_active_bout

mean_nonactive_bout

89

89.5

5.61236

10.50838

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages