Skip to content

madtank/Bedrock-ChatBot-with-LangChain-and-Streamlit

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bedrock ChatBot with LangChain and Streamlit 💬

A simple and clear example for implement a chatbot with Bedrock + LangChain + Streamlit. Just install and run the code~ 🚀

pip install -r requirements.txt
streamlit run bedrock/bedrock_chatbot.py

Note: if you're going to use web search function, add your serpapi key to bedrock/.env file~

Updates

Enhanced RAG (Retrieval-Augmented Generation) Feature

We have significantly enhanced the RAG feature in our AI model. Now, it allows users to upload their own documents and index them either locally or on a server.

The uploaded documents are indexed and stored persistently on the chosen location. This means that the indexed documents can be reused anytime without needing to be re-uploaded or re-indexed.

Moreover, you can continually add more documents to the existing index, making the system increasingly robust and knowledgeable over time.

To use the enhanced RAG feature, select 'RAG' from the 'Options' dropdown in the chatbot interface, and follow the prompts to upload and index your documents.

Index the uploaded files

Search using RAG

Indexing Documents and Using RAG Feature

To use the RAG (Retrieval-Augmented Generation) feature, you need to index your documents using the bedrock_indexer.py script. This script creates a FAISS index from the documents in a directory.

Here's how to use it:

  1. Add your documents to the "documents" directory. These can be text files or other types of documents that you want the RAG model to use for information retrieval.
  2. Run the bedrock_indexer.py script:
python bedrock_indexer.py

24/04/15 Updates

Add Web Search (via SerpAPI) and role prompt option! 🎉🎉🎉

image

24/04/14 Updates

Thanks @madtank for adding PDF/CSV/PY file upload feature! 🎉🎉🎉

image

24/04/05 Updates

1. Add Dockfile for container enviroment and remove the packages installation! 🎉🎉🎉

You could build your own, and I've also uploaded a public container image at public.ecr.aws for you~

docker run -d -v $HOME/.aws/config:/root/.aws/config:ro -p 8502:8501 public.ecr.aws/shtian/bedrock-claude-3-langchain-streamlit:latest

2. NEW! Mistral Large on Bedrock Supported! 🎉🎉🎉 image

24/03/14 Updates

NEW! Claude 3 Haiku on Bedrock Supported! Let's Go Faster! 🎉🎉🎉 image

Install via the command:

pip install -r requirements.txt

24/03/11 Updates

NEW! Claude 3 Sonnet on Bedrock Supported! New Message API Plus Vision Multimodal Chat! 🎉🎉🎉

Add system prompt option.

image

24/03/10 Updates

NEW! Claude 3 Sonnet on Bedrock Supported! New Message API Plus Vision Multimodal Chat! 🎉🎉🎉

Install langchain from source, for new Bedrock API support.

Note: No need to hack in bedrock code! Just change the langchain_messages state of streamlit in the app code. Complete this code with the help of Claude itself :)

git clone https://github.com/langchain-ai/langchain.git
pip install -e langchain/libs/langchain

Then run the command:

streamlit run bedrock_chatbot_claude_3_sonnet_vision.py

Bingo! image

Note: Some details like - smooth history catchup with new message api, support mulitple images in one chat, image keep in the thumbnail in one line, multimodal and text-only mixed chat, no some bump up after rerun and re-initialize, fix lots of format mismatch...

24/03/09 Updates

NEW! Claude 3 Sonnet on Bedrock Supported~ Message API Plus Vision Multimodal! 🎉🎉🎉

Extra action needed (till now) - install langchain from source.

Note: A little bit hack for streamlit conversation history format mismatch, and modify langchain community bedrock source code, no impact on BedrockChat invoke ~

git clone https://github.com/davidshtian/langchain.git
pip install -e langchain/libs/langchain

Then run the command:

streamlit run bedrock_chatbot_claude_3_sonnet_vision.py

Bingo! image

24/03/08 Updates

NEW! Claude 3 Sonnet on Bedrock Supported~ Message API

Extra action needed (till now) - install langchain from source:

git clone https://github.com/langchain-ai/langchain.git
pip install -e langchain/libs/langchain

Note: Only text supported now, vision later!

Then run the command:

streamlit run bedrock_chatbot_claude_3_sonnet.py

The bot is equipped with chat history using ConversationBufferWindowMemory and StreamlitChatMessageHistory, and provided with both simple(batch) and streaming modes. Demo shown as below:

Bedrock_Chat_Fast.mp4

Streaming mode demo shown as below:

Bedrock_Chat_Streaming_Fast.mp4

About

A simple and clear example for implement a chatbot with Bedrock (Claude and Mistral) + LangChain + Streamlit.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.9%
  • Dockerfile 1.1%