Skip to content

maartensukel/urban-object-detection

Repository files navigation

Demo 2

Urban object detection using PyTorch and YoloV3

For more information, look at this medium post.

PyTorch implementation of an urban object detection model. This repository contains all code for predicting/detecting and evaulating the model.

This repository combines elements from:

Demo 1

Installation

To install all required libaries:

pip install -r requirements.txt

Predictions

Several different weights and configs are available at: https://drive.google.com/open?id=1DjeNxdaF7AW3Nu54_3oRw_1SeYJtOvNL. Some also have the testing data.

Pre trained weights

Name Classes Test data
3 classes cardboard, garbage_bags and containers Yes
cigarettes cigarette Yes
12 classes container_small, garbage_bag, cardboard, matras, christmas_tree, graffiti, pole, face_privacy_filter and license_plate_privacy_filter, construction_toilet, construction_container, construction_shed No

Run predictions

To run predictions, download the cfg and weights from https://drive.google.com/open?id=1DjeNxdaF7AW3Nu54_3oRw_1SeYJtOvNL and put them in the correct folders.

Then for example run the following the make a prediction on a file using CPU:

python detector_garb.py -i samples/input5_frame11.jpg -o output

Or to realtime detect on your webcam using GPU: (CUDA must be installed)

python detector_garb.py -i 0 --webcam --video -o ./webcam_output/ --cuda

Docker

To run code in docker

docker-compose build
docker-compose up

Test

For testing download data from: https://drive.google.com/drive/folders/1DjeNxdaF7AW3Nu54_3oRw_1SeYJtOvNL

The garbage bags, containers and cardboard dataset contains 804 images and label files. A smaller dataset with annotations of cigarettes is also available.

To run test execute the following code:

python test.py
Class Images Targets P R mAP F1
all 115 579 0.242 0.941 0.875 0.376
container_small 115 180 0.38 0.989 0.979 0.549
garbage_bag 115 223 0.212 0.964 0.875 0.348
cardboard 115 176 0.122 0.869 0.77 0.231

test_example

The model with 12 classes has been trained on a larger collection. The test results are below.

Class Images Targets P R mAP F1
all 179 706 0.263 0.873 0.811 0.392
container_small 179 142 0.521 0.972 0.97 0.678
garbage_bag 179 114 0.266 0.965 0.936 0.417
cardboard 179 78 0.132 0.962 0.89 0.232
matras 179 8 0.467 0.875 0.875 0.609
kerstboom 179 10 0.278 1 1 0.435
graffiti 179 73 0.185 0.932 0.885 0.308
amsterdammertje 179 52 0.325 0.942 0.911 0.483
face_privacy_filter 179 87 0.139 0.782 0.599 0.237
license_plate_privacy_filter 179 103 0.186 0.845 0.713 0.304
construction_toilet 179 7 0.211 0.571 0.524 0.308
construction_container 179 21 0.173 0.905 0.842 0.29

Training

For training a new model look at:

https://github.com/maartensukel/yolov3-garbage-object-detection-training

This is the training loss of 1600 images with 12 classes: test_example

About

PyTorch implementation of an urban object detection model.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published