New version with yolov5: https://gitlab.com/odk/odk-frame-analyzer
For more information, look at this medium post.
PyTorch implementation of an urban object detection model. This repository contains all code for predicting/detecting and evaulating the model.
This repository combines elements from:
To install all required libaries:
pip install -r requirements.txt
Several different weights and configs are available at: https://drive.google.com/open?id=1DjeNxdaF7AW3Nu54_3oRw_1SeYJtOvNL. Some also have the testing data.
Name | Classes | Test data |
---|---|---|
3 classes | cardboard, garbage_bags and containers | Yes |
cigarettes | cigarette | Yes |
12 classes | container_small, garbage_bag, cardboard, matras, christmas_tree, graffiti, pole, face_privacy_filter and license_plate_privacy_filter, construction_toilet, construction_container, construction_shed | No |
To run predictions, download the cfg and weights from https://drive.google.com/open?id=1DjeNxdaF7AW3Nu54_3oRw_1SeYJtOvNL and put them in the correct folders.
Then for example run the following the make a prediction on a file using CPU:
python detector_garb.py -i samples/input5_frame11.jpg -o output
Or to realtime detect on your webcam using GPU: (CUDA must be installed)
python detector_garb.py -i 0 --webcam --video -o ./webcam_output/ --cuda
To run code in docker
docker-compose build
docker-compose up
For testing download data from: https://drive.google.com/drive/folders/1DjeNxdaF7AW3Nu54_3oRw_1SeYJtOvNL
The garbage bags, containers and cardboard dataset contains 804 images and label files. A smaller dataset with annotations of cigarettes is also available.
To run test execute the following code:
python test.py
Class | Images | Targets | P | R | mAP | F1 |
---|---|---|---|---|---|---|
all | 115 | 579 | 0.242 | 0.941 | 0.875 | 0.376 |
container_small | 115 | 180 | 0.38 | 0.989 | 0.979 | 0.549 |
garbage_bag | 115 | 223 | 0.212 | 0.964 | 0.875 | 0.348 |
cardboard | 115 | 176 | 0.122 | 0.869 | 0.77 | 0.231 |
The model with 12 classes has been trained on a larger collection. The test results are below.
Class | Images | Targets | P | R | mAP | F1 |
---|---|---|---|---|---|---|
all | 179 | 706 | 0.263 | 0.873 | 0.811 | 0.392 |
container_small | 179 | 142 | 0.521 | 0.972 | 0.97 | 0.678 |
garbage_bag | 179 | 114 | 0.266 | 0.965 | 0.936 | 0.417 |
cardboard | 179 | 78 | 0.132 | 0.962 | 0.89 | 0.232 |
matras | 179 | 8 | 0.467 | 0.875 | 0.875 | 0.609 |
kerstboom | 179 | 10 | 0.278 | 1 | 1 | 0.435 |
graffiti | 179 | 73 | 0.185 | 0.932 | 0.885 | 0.308 |
amsterdammertje | 179 | 52 | 0.325 | 0.942 | 0.911 | 0.483 |
face_privacy_filter | 179 | 87 | 0.139 | 0.782 | 0.599 | 0.237 |
license_plate_privacy_filter | 179 | 103 | 0.186 | 0.845 | 0.713 | 0.304 |
construction_toilet | 179 | 7 | 0.211 | 0.571 | 0.524 | 0.308 |
construction_container | 179 | 21 | 0.173 | 0.905 | 0.842 | 0.29 |
For training a new model look at:
https://github.com/maartensukel/yolov3-garbage-object-detection-training