Skip to content

luksurious/faster-teaching

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Replication of

Faster Teaching via POMDP Planning

by Rafferty et. al (2016) (https://www.onlinelibrary.wiley.com/doi/full/10.1111/cogs.12290)

Authors: Lukas Brückner, Aurélien Nioche (User Interfaces Group, Aalto University, Finland)

Replication paper

Requirements

  • Python 3 (tested with 3.7+)
  • Modules as listed in requirements.txt

Setup

  1. (Optional) Create virtual/conda environment
  2. Install required modules via pip install -r requirements.txt
  3. Create data folder

Running

python main.py [options] <policy> <task>

Full list of options

usage: main.py [-h|--help]
               # general config
               [-v|--verbose]
               [--no_show]
               
               # learner
               [-m|--manual]
               [-s|--single]
               [-c SIM_COUNT]
               [--pool POOL]
               # learner simulation options
               [--sim_seed SIM_SEED]
               [--sim_model {memoryless,discrete,continuous}]
               [--sim_discrete_memory SIM_DISCRETE_MEMORY]
               [--sim_pause SIM_PAUSE]
               [--sim_no_noise]

               # number game options
               [--number_concept {mul7,64-83,mul4-1}]

               # letter arithmetic options
               [-l|--problem_len PROBLEM_LEN]
               [-r|--number_range NUMBER_RANGE]

               # teacher options
               [--teaching_phase_actions TEACHING_PHASE_ACTIONS]
               [--max_teaching_phases MAX_TEACHING_PHASES]

               # policy options
               [--actions_qe_only]
               [--plan_no_noise]
               [--plan_discrete_memory PLAN_DISCRETE_MEMORY]      
               [--particle_limit PARTICLE_LIMIT] 
    
               [--plan_online_horizon PLAN_ONLINE_HORIZON]
               [--plan_online_samples [PLAN_ONLINE_SAMPLES [...]]]

               [--plan_pre_steps PLAN_PRE_STEPS]
               [--plan_pre_horizon PLAN_PRE_HORIZON]
               [--plan_pre_samples PLAN_PRE_SAMPLES]
               [--plan_load_actions PLAN_LOAD_ACTIONS]

               # policy
               [{memoryless,discrete,continuous,random,mig}]
               # task
               {letter,number_game}

Experiments from the paper are listed in the various *.sh shell scripts.

Examples

  • Manual learner via CLI with the letter arithmetic task and a random policy (verbose) python main.py -m -v random letter
  • Single simulated memoryless learner of the number game (task multiples of 7) with the memoryless policy (verbose) python main.py -sv --sim_model memoryless --number_concept mul7 memoryless number_game
  • 50 simulated trials of the continuous learner with the discrete memory policy for the letter arithmetic task with precomputation and defined horizon sampling python main.py -c --plan_pre_steps 9 --plan_pre_horizon 2 --plan_online_horizon 2 --sim_model continuous --plan_online_samples 8 8 -- discrete letter

JSON output and generated figures are stored in the data folder.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published