Skip to content

Latest commit

 

History

History
120 lines (91 loc) · 3.95 KB

README.md

File metadata and controls

120 lines (91 loc) · 3.95 KB

draw_tfp

Tensorflow Implementation of 'DRAW: A Recurrent Neural Network For Image Generation'

mnist generation gif svhn generation gif cifar10 generation gif

Dependencies

tensorflow==1.13.1
tensorflow_probability==0.6.0
tensorflow_datasets==1.0.2
numpy==1.16.4
matplotlib==3.1.0
moviepy==1.0.0

Getting started

Step 1.

Install the dependencies. I suggest creating separate python environment for this project. You can do this easily using virtualenv or Anaconda 3.

After activating the virtual environment, install the dependencies.

A Note for Anaconda 3 users:

click to expand
The tensorflow libraries are not available using 'conda install'. You'll have to get them using pip.

This causes some issues when installing the other dependencies. 

- I observed that installing the other dependencies using conda caused numpy incompatibility with Tensorflow. 
- Tensorflow installs a particular version of numpy (1.16.4) alongside it. 
- Conda does not appear to know about Tensorflow's dependency on this version of numpy.
- Conda overwrites it when you install other dependencies such as matplotlib. 

- As a workaround, you can install all the dependencies via pip, within the conda environment. 
- This solves the problem completely.

Step 2.

Clone this repo, and navigate to it.

Step 3.

Create directories for tensorboard logs, checkpoints, and outputs from the model (such as generated samples).

(draw_virtualenv) $ git clone https://github.com/lucaslingle/draw_tfp/
(draw_virtualenv) $ cd draw_tfp
(draw_virtualenv) $ mkdir tensorboard_logs
(draw_virtualenv) $ mkdir checkpoints
(draw_virtualenv) $ mkdir output

Training a model

This implementation supports MNIST, CIFAR-10, and SVHN.

The default settings are configured with the hyperparameters to train a DRAW model on MNIST.
You can train a DRAW model on MNIST by running

(draw_virtualenv)$ python app.py --dataset=mnist \
--mode=train --epochs=10 \
--checkpoint_dir=checkpoints/mnist_model_1/ --summaries_dir=tensorboard_logs/mnist_model_1/ 

It should be done running in less than an hour, which is a 48x speedup over competing implementations.

To train a model on SVHN, here are some hyperparameters that work well:

(draw_virtualenv)$ python app.py --dataset=svhn_cropped \
--img_height=32 --img_width=32 --img_channels=3 \
--batch_size=100 \
--encoder_hidden_dim=800 --decoder_hidden_dim=800 --read_dim=12 --write_dim=12 --z_dim=100 --num_timesteps=32 \
--init_scale=0.04 \
--lr=0.0003 \
--mode=train --epochs=10 \
--checkpoint_dir=checkpoints/svhn_model_1/ --summaries_dir=tensorboard_logs/svhn_model_1/

Generating samples

Once you've trained a model, you can generate samples like so:

(draw_virtualenv)$ python app.py --dataset=svhn_cropped	\
--img_height=32 --img_width=32 --img_channels=3 \
--batch_size=100 \
--encoder_hidden_dim=800 --decoder_hidden_dim=800 --read_dim=12 --write_dim=12 --z_dim=100 --num_timesteps=32 \
--mode=generate_gif \
--checkpoint_dir=checkpoints/svhn_model_1/ --load_checkpoint=checkpoints/svhn_model_1/ \
--output_dir=output/

And you'll get a GIF of the model drawing!

svhn generation gif

Generating reconstructions

You can also generate visualizations of the model reconstructing real data. You can generate reconstruction gifs like so:

(draw_virtualenv)$ python app.py --dataset=svhn_cropped \
--img_height=32 --img_width=32 --img_channels=3 \
--encoder_hidden_dim=800 --decoder_hidden_dim=800 --read_dim=12 --write_dim=12 --z_dim=100 --num_timesteps=32 \
--mode=generate_gif \
--checkpoint_dir=checkpoints/svhn_model_1/ --load_checkpoint=checkpoints/svhn_model_1/ \
--output_dir=output/

And you'll get a GIF of the reconstruction process!

svhn reconstruction gif cifar10 reconstruction gif