Skip to content

The implementation of paper "Preference Diffusion for Recommendation" published in ICLR 2025.

Notifications You must be signed in to change notification settings

lswhim/PreferDiff

Repository files navigation

Preference Diffusion for Recommdation (ICLR 2025)

Shuo Liu1,2, An Zhang2*, Guoqing Hu3, Hong Qian1, Tat-Seng Chua2,
1East China Normal University, 2National University of Singapore,
3University of Science and Technology of China, (*Correspondence )


😸 Welcome to PreferDiff, this is a implementation of Preference Diffusion for Recommendation

1️⃣ ​ Guide for Running PreferDiff

🚶‍♂️ Single GPU

python main.py --model=PreferDiff --sd=O --td=O --loss_type=cosine  --lamda=0.4 --w=2 --hidden_size=3072  --ab=iids

🏃 Multi-GPU

CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --main_process_port=12330 main.py --model=PreferDiff --sd=O --td=O --loss_type=cosine  --lamda=0.4 --w=2 --hidden_size=3072 --ab=iids

2️⃣ Best Hyperparameters

Dataset learning rate Weight Decay lambda w Embedding Size
Sports 1e-4 0 0.4 2 3072
Beauty 1e-4 0 0.4 8 3072
Toys 1e-4 0 0.6 6 3072

3️⃣ Guide for Running Baselines

CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --main_process_port=12330 main.py --model=SASRec --sd=O --td=O 

Bibtex

@inproceedings{Liu2024PreferDiff,
author = {Shuo Liu, An Zhang, Guoqing Hu, Hong Qian, Tat-seng Chua},
booktitle = {Proceedings of the 13th International Conference on Learning Representations},
title = {Preference Diffusion for Recommendation},
year = {2024},
address={Singapore}
}

About

The implementation of paper "Preference Diffusion for Recommendation" published in ICLR 2025.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages