Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: Clean up constructor and fix the sampling via stochastic representation for FGMCopula #228

Merged
merged 1 commit into from
Sep 21, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 31 additions & 54 deletions src/MiscellaneousCopulas/FGMCopula.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,22 +16,19 @@ C(\\boldsymbol{u})=\\prod_{i=1}^{d}u_i \\left[1+ \\sum_{k=2}^{d}\\sum_{1 \\leq j

where `` \\bar{u}=1-u``.

More details about Farlie-Gumbel-Morgenstern (FGM) copula are found in :

Nelsen, Roger B. An introduction to copulas. Springer, 2006. Exercise 3.38.

We use the stochastic representation of the copula to obtain random samples.

Blier-Wong, C., Cossette, H., & Marceau, E. (2022). Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis, 173, 107506.

It has a few special cases:
- When d=2 and θ = 0, it is the IndependentCopula.

More details about Farlie-Gumbel-Morgenstern (FGM) copula are found in [nelsen2006](@cite).
We use the stochastic representation from [blier2022stochastic](@cite) to obtain random samples.

References:
* [nelsen2006](@cite) Nelsen, Roger B. An introduction to copulas. Springer, 2006.
* [blier2022stochastic](@cite) Blier-Wong, C., Cossette, H., & Marceau, E. (2022). Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis, 173, 107506.
"""
struct FGMCopula{d, Tθ} <: Copula{d}
struct FGMCopula{d, Tθ, Tf} <: Copula{d}
θ::Tθ
fᵢ::Tf
function FGMCopula(d, θ)
vθ = typeof(θ)<:Vector ? θ : [θ]
if all(θ .== 0)
Expand All @@ -40,70 +37,50 @@ struct FGMCopula{d, Tθ} <: Copula{d}
# Check first restrictions on parameters
any(abs.(vθ) .> 1) && throw(ArgumentError("Each component of the parameter vector must satisfy that |θᵢ| ≤ 1"))
length(vθ) != 2^d - d - 1 && throw(ArgumentError("Number of parameters (θ) must match the dimension ($d): 2ᵈ-d-1"))

# Last check:
rez = new{d, typeof(vθ)}(vθ)
for epsilon in Base.product(fill([-1, 1], d)...)
if 1 + _reduce_over_combinations(rez,epsilon,prod) < 0
if 1 + _fgm_red(vθ, epsilon) < 0
throw(ArgumentError("Invalid parameters. The parameters do not meet the condition to be an FGM copula"))
end
end
return rez

# Now construct the stochastic representation:
wᵢ = [_fgm_red(vθ, 1 .- 2*Base.reverse(digits(i, base=2, pad=d))) for i in 0:(2^d-1)]
fᵢ = Distributions.DiscreteNonParametric(0:(2^d-1), (1 .+ wᵢ)/2^d)
return new{d, typeof(vθ), typeof(fᵢ)}(vθ, fᵢ)
end
end
Base.eltype(C::FGMCopula) = eltype(C.θ)
function _reduce_over_combinations(C::FGMCopula{d,Tθ}, vector_to_combine, reducer_function) where {d,Tθ}
# This version of the reductor is non-allocative, which is much better in terms of performance.
# Moreover, since $d$ is a type parameter the loop will fold out at compile time :)
rez = zero(eltype(vector_to_combine))
# Iterate over all possible combinations of k elements, for k = 2, 3, ..., d
i = 1
function _fgm_red(θ, v)
# This function implements the reduction over combinations of the fgm copula.
# It is non-alocative thus performant :)
rez, d, i = zero(eltype(v)), length(v), 1
for k in 2:d
for indices in Combinatorics.combinations(1:d, k)
rez += C.θ[i] * reducer_function(vector_to_combine[indices])
i = i+1
end
for indices in Combinatorics.combinations(1:d, k)
rez += θ[i] * prod(v[indices])
i = i+1
end
end
return rez
end
function _cdf(fgm::FGMCopula, u::Vector{T}) where {T}
return prod(u) * (1 + _reduce_over_combinations(fgm, 1 .-u, prod))
end
function Distributions._logpdf(fgm::FGMCopula, u)
return log1p(_reduce_over_combinations(fgm, 1 .-2u, prod))
end
function Distributions._rand!(rng::Distributions.AbstractRNG, fgm::FGMCopula{d,Tθ}, x::AbstractVector{T}) where {d,Tθ, T <: Real}
if d == 2
u = rand(rng, T)
t = rand(rng, T)
a = 1.0 .+ fgm.θ .* (1.0-2.0*u)
b = sqrt.(a.^2 .-4.0 .*(a .-1.0).*t)
v = (2.0 .*t) ./(b .+ a)
x[1] = u
x[2] = v[1]
return x
elseif d > 2
I = zeros(T,d)
for i in 1:d
term = _reduce_over_combinations(fgm, I, x -> (-1)^sum(x))
I[i] = rand(rng) < (1 / 2^d) * (1 + term)
end
V0 = rand(rng, d)
V1 = rand(rng, d)
for j in 1:d
U_j = 1-sqrt(1-V0[j])*(1-V1[j])^(I[j])
x[j] = U_j
end
return x
end
_cdf(fgm::FGMCopula, u::Vector{T}) where {T} = prod(u) * (1 + _fgm_red(fgm.θ, 1 .-u))
Distributions._logpdf(fgm::FGMCopula, u) = log1p(_fgm_red(fgm.θ, 1 .-2u))
function Distributions._rand!(rng::Distributions.AbstractRNG, fgm::FGMCopula{d, Tθ, Tf}, x::AbstractVector{T}) where {d,Tθ, Tf, T <: Real}
I = Base.reverse(digits(rand(rng,fgm.fᵢ), base=2, pad=d))
V₀ = rand(rng, d)
V₁ = rand(rng, d)
x .= 1 .- sqrt.(V₀) .* (V₁ .^ I)
return x
end
τ(fgm::FGMCopula) = (2*fgm.θ[1])/9
τ(fgm::FGMCopula{2, Tθ, Tf}) where {Tθ,Tf} = (2*fgm.θ[1])/9
function τ⁻¹(::Type{FGMCopula}, τ)
if !all(-2/9 <= τi <= 2/9 for τi in τ)
throw(ArgumentError("For the FGM copula, tau must be in [-2/9, 2/9]."))
end
return max.(min.(9 * τ / 2, 1), -1)
end
ρ(fgm::FGMCopula) = (1*fgm.θ)/3 # this is weird as it will return a vector ?
ρ(fgm::FGMCopula{2, Tθ, Tf}) where {Tθ,Tf} = fgm.θ[1]/3
function ρ⁻¹(::Type{FGMCopula}, ρ)
if !all(-1/3 <= ρi <= 1/3 for ρi in ρ)
throw(ArgumentError("For the FGM copula, rho must be in [-1/3, 1/3]."))
Expand Down
Loading