Skip to content

lpphd/multivariate-attention-tcn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Interpretable Multivariate Time Series Forecasting with Temporal Attention Convolutional Neural Networks

This repository contains the official implementation for the models described in Interpretable Multivariate Time Series Forecasting with Temporal Attention Convolutional Neural Networks. These include a Temporal Convolutional Network (TCN), as well as the proposed Temporal Attention Convolutional Network (TACN) that combines a TCN with an attention mechanism.

If you find this work helpful in your research, consider citing our paper:

@INPROCEEDINGS{pantiskas2020tacn,  
author={L. {Pantiskas} and K. {Verstoep} and H. {Bal}},  
booktitle={2020 IEEE Symposium Series on Computational Intelligence (SSCI)},   
title={{Interpretable Multivariate Time Series Forecasting with Temporal Attention Convolutional Neural Networks}},   
year={2020},  
volume={},  
number={},  
pages={1687-1694},  
doi={10.1109/SSCI47803.2020.9308570}}

Requirements

The code is written in Python 3.7.7 and has the following dependencies for the training and evaluation notebooks:

  • tensorflow==2.1.0
  • tensorflow-addons==0.8.2
  • tqdm==4.46.0
  • seaborn==0.10.1
  • scipy==1.4.1
  • scikit-learn==0.22.1
  • pygam==0.8.0
  • pydotplus==2.0.2
  • pandas==1.0.3
  • numpy==1.18.1
  • matplotlib==3.1.3
  • ipywidgets==7.5.1
  • eli5==0.10.1

To install requirements:

pip install -r requirements.txt

Training

To train a model from the paper, either execute the suitable training Jupyter notebook or convert it to Python script with:

jupyter nbconvert --to script NotebookName.ipynb

and run it with:

python NotebookName.py

The scripts require interactive input.

Evaluation

To evaluate a model from the paper, it is suggested to execute the suitable evaluation Jupyter notebook in order to easily view the resulting graphs apart from the metrics. The evaluation notebooks load the pre-trained models in their respective folder by default, so if you want to load your own trained models you will have to edit the location in the suitable cell in the notebooks.

Pre-trained Models

The pre-trained models with the parameters described in the paper are in their respective Weights folders. Each folder contains 10 .h5 weight files, which correspond to 10 trained instances of the same model with different seeds.

Results

Our model is evaluated in the task of multi-step forecasting on the following datasets:

Below we can see the performance metrics of our method and the baselines:

Air Quality Dataset
Baseline Proposed Model
CO RMSE 1.56 +- 0.10 1.32 +- 0.04
MAE 1.1 +- 0.07 0.93 +-0.03
Benzene RMSE 7.59 +- 0.31 7.02 +- 0.52
MAE 5.69 +- 0.27 4.85 +- 0.25
NOX RMSE 244.43 +- 22.63 214.49 +- 10.31
MAE 180.62 +- 15.56 152.25 +- 7.46
NO2 RMSE 52.35 +- 13.29 48.57 +- 1.53
MAE 41.83 +- 12.66 36.94 +- 1.18
Training time (sec) 477 +- 7 524 +- 11
Water Quality Dataset
Temperature RMSE 0.59 +- 0.07 0.50 +- 0.02
MAE 0.39 +- 0.04 0.33 +- 0.02
Training time (sec) 4554 +- 143 5310 +- 262

Training and evaluation random seeds

Air Quality Baseline Air Quality Proposed Model Water Quality Baseline Water Quality Proposed Model
Seed Experiment Id Seed Experiment Id Seed Experiment Id Seed Experiment Id
2650481 3af068ef-70de-4a71-86e2-e3a07b2a8b20 2650491 36c93c9e-3105-47f5-9e85-5beb23e94e68 2639467 5aa4c32f-3a25-49b8-997b-1bdb4af37939 2639478 b4b94f1c-6d65-459c-adb8-389cbd0e97c5
2650482 60a8f6f3-f528-4e00-94ad-b4a963457319 2650492 25d6d2d6-2265-4431-88a2-bc49831eb8c6 2639468 80c4e454-726a-405f-9e83-f524f20939a9 2639479 3a4e66b9-5244-4bc0-9076-a3eca47d5fe4
2650483 4ed1d1c2-476d-4741-a980-55e830c8c79b 2650493 492bc644-16a5-41b9-b226-20c2dbefce13 2639469 d1ef568b-174d-4f9e-97b6-6813c4270a5c 2639480 78337ffe-d26e-4e7b-9497-0bd0cb9c2974
2650484 01e02876-b021-4215-9111-4122b3519778 2650494 6cd2a5a8-35f7-431a-a671-7c54aaf36ac3 2639470 317ff62b-8bcd-40c1-811d-b5ba67d2ab7c 2639481 c6c30ea5-33ab-4900-bc0e-d2fd98c1bcab
2650485 8a62a6c5-8570-474a-aa4a-a758573778bb 2650495 a54c34b0-69ee-43d2-b900-61e0fb0d8228 2639471 83f3dcf9-491a-4c20-8c39-064c65163d35 2639482 db7b10b4-4b52-4a26-97ca-56186eb924a1
2650486 6e1973ff-8fcc-47ce-a28e-41c7daa661d2 2650496 f43a22dd-ac6f-4db9-a5b4-17d4a7ef9c5b 2639472 cef6c672-f8eb-4916-9221-82051633b99c 2639483 f08332bc-d654-4219-a7c1-e0e6854fb2b5
2650487 3a6c674e-abcf-4879-bd8c-3f893769c9f0 2650497 f62368ea-9cc9-4fd6-8f7a-a28b6bf3b4b4 2639473 7e31a1d4-5fed-4924-939e-b2cde7fdf96b 2639484 7fba0620-13b4-4306-8a2a-6c82b025a8fe
2650488 a5697c28-0c05-466b-a17a-5de349cc156a 2650498 7c4c024c-f347-4027-9c19-1264357ec174 2639474 350cbc49-a71e-4336-839b-2be9ed889eca 2639485 67f95b23-e4a5-4b5b-9512-6c65e3918545
2650489 35801255-51d1-42a3-86fe-b3efd7094b58 2650499 393c6468-7a41-455f-8fdd-70cd674b3b11 2639475 6847ae60-80d8-4580-bb3e-10ee1e9ccaf3 2639486 b82aad09-1631-4540-9058-3c6eff69511e
2650490 db1722ce-f7ab-499b-b865-6165fe73cc3b 2650500 510e465d-c041-4fb3-b76c-f514fde218ae 2639476 b6108ad8-4a30-49d8-aaad-4d8d1c40ad37 2639487 bcb62682-39db-483e-aa24-b9afa625d99e

The random seed that was used for all evaluation experiments is 45112.

Visualization examples

Temperature attention distribution pH attention distribution Dissolved oxygen attention distribution